

Swastik Gas Train Layout

Sr.	Description
01	Ball Valve
02	Pressure Gauge
03	Gauge Isolater
04	Gas Filter
05	Safety Shutt Off Valve
06	Gas Pressure Regulator/governor
07	Impulse Line To Safety Shutt Off Valve
80	Impulse Line To Gas Regulator
09	Safety Relief Valve

CONVERTING VOLUMES OF GAS CFH TO CFH OR CFM TO CFM			
MULTIPLY FLOW OF:	BY	TO OBTAIN FLOW OF :	
	0.707	Butane	
Air	1.290	Natural Gas	
	0.808	Propane	
	1.414	Air	
Butane	1.826	Natural Gas	
	1.140	Propane	
	0.775	Air	
Natural	0.547	Butane	
	0.625	Propane	
	1.237	Air	
Propane	0.874	Butane	
	1.598	Natural Gas	

Introduction:

Pressure Reducing Regulator / Direct Operated Regulator Are Ideal For Industrial And Commercial Applications Supplying Gas To Furnaces, Burners And Other Applications. A Balancing System Enables The Regulator To Control Gas Pressure Accurately For Max. Combustion Efficiency Despite Varying Inlet Pressures.

● Control Application:

For Selection It Is Necessary To Identify The Function Of The Regulator. The Answer To This Question Defines Which Of The Following Regulator's Is Required.

- Pressure Reducing Regulator Back Pressure Regulator Pressure Relief Valve • Vacuum Regulator
- Capacity Determination:
- The Required Flow Capacity Influences And Determines The Following.
- Size Of The Regulator.
- Orifice Size
- Style Of Regulator (direct Operated / Pilot Operated)

• Pressure Regulator Selection:

Based On The Application The Pressure Reducing Regulator Is Designed. Every Application Calls For A Pressure Reducing Regulator Based on The Under Mentioned Parameters.

- Outlet Pressure To Be Maintained.
- Inlet Pressure Capacity Required Shut Off Capability Required,
- Pipe Size •End Connection •Material Of Construction.

Outlet Pressure To Be Maintained:

The First Parameter Is To Define The Required Outlet Pressure When The Outlet Pressure Is Known We Can Ascertain The Requirement From The Under Mentioned.

- Spring Requirement Casing Pressure Rating Body Outlet Rating
- Orifice Rating & Size Regulator Size

CONTROL **VALVE**

SAFETY VALVE

