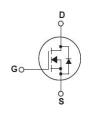


# RTW50N20D/RTA50N20D 200V N-Channel MOSFET

### **General Description**

This N-channel Enhanced VDMOSFET is produced using the self-aligned planar technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for various switching mode power supplies, for system miniaturization and higher efficiency.

#### **Features**


- · Fast switching
- · Improved dv/dt capability
- · 220V @TJ = 150 ℃
- · Typ. RDS(on) =  $30m\Omega$
- · Low Gate Charge (typ. Qg = 244nC)
- · 100% avalanche tested

#### RTW50N20D









### **Absolute Maximum Ratings**

|                                   | <del>-</del>                                                                          |              |      |
|-----------------------------------|---------------------------------------------------------------------------------------|--------------|------|
| Symbol                            | Parameter                                                                             | RTW_A50N20D  | Unit |
| $V_{DRT}$                         | Drain-Source Voltage                                                                  | 200          | V    |
| I <sub>D</sub>                    | Drain Current -Continuous (TC = $25^{\circ}$ C)<br>-Continuous (TC = $100^{\circ}$ C) | 50*<br>31.6* | А    |
| I <sub>DM</sub>                   | Drain Current - Pulsed (Note 1)                                                       | 200          | Α    |
| $V_{GRT}$                         | Gate-Source voltage                                                                   | ±20          | V    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)                                               | 3900         | mJ   |
| I <sub>AS</sub>                   | Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)       | 12.5         | А    |
| dv/dt                             | Peak Diode Recovery dv/dt (Note 3)                                                    | 5            | V/ns |
| dVds/dt                           | Drain Source voltage slope (Vds=600V)                                                 | 50           | V/ns |
| P <sub>D</sub>                    | Power DiRTipation (TC = 25℃)                                                          | 240          | W    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                               | -55 to +150  | °C   |
| TL                                | Max. Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds             | 300          | °C   |

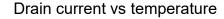
 $<sup>^{</sup>st}$  Drain current limited by maximum junction temperature.

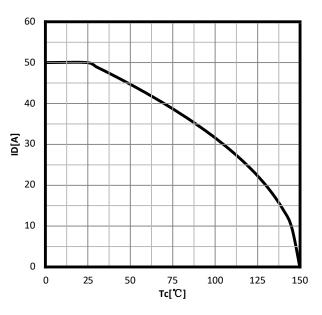
#### **Thermal Characteristics**

| Symbol          | Parameter                               | RTW_A50N20D | Unit |
|-----------------|-----------------------------------------|-------------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case    | 0.52        | °C/W |
| $R_{\theta CS}$ | Thermal Resistance, Case–to–Sink Typ.   | 0.5         | ℃/W  |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | 62          | °C/W |

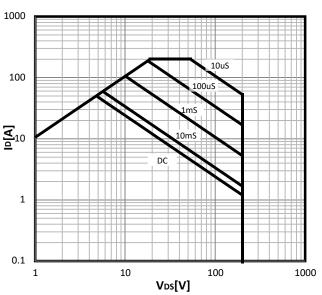


# Electrical Characteristics TC = 25°C unleRT otherwise noted

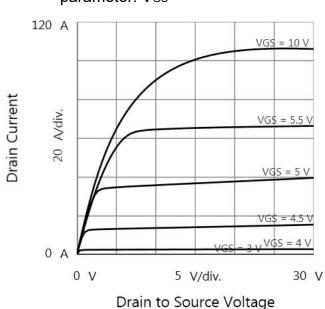

| Symbol       | Parameter                                             | Conditions                         | Min | Тур  | Max  | Unit |
|--------------|-------------------------------------------------------|------------------------------------|-----|------|------|------|
| Off Charact  | eristics                                              |                                    |     |      |      |      |
| BVDRT        | Drain-Source Breakdown Voltage                        | VGS = 0V, ID = 250μA,<br>TJ = 25℃  | 200 | -    | -    | V    |
|              |                                                       | VGS = 0V, ID = 250µA,<br>TJ = 150℃ | -   | 220  | -    | V    |
| ΔBVdrt/ΔTj   | Breakdown Voltage Temperature Coefficient             | ID = 250µA, Referenced to 25°C     | -   | 0.2  | -    | V/℃  |
| IDRT         | Zero Gate Voltage Drain Current                       | Vps = 200V, Vgs = 0V               | -   | -    | 1    | μΑ   |
| IGRTF        | Gate-Body Leakage Current, Forward                    | Vgs = 20V, Vps = 0V                | -   | -    | 100  | nA   |
| Igrtr        | Gate-Body Leakage Current, Reverse                    | Vgs = -20V, Vps = 0V               | -   | -    | -100 | nA   |
| On Charact   | eristics                                              |                                    |     |      |      |      |
| VGS(th)      | Gate Threshold Voltage                                | VDS = VGS, ID = 250µA              | 2.0 | 3.0  | 4.0  | V    |
| RDS(on)      | Static Drain-Source On-Resistance                     | Vgs = 10V, ID = 25A                | -   | 30   | 38   | mΩ   |
| gFS          | Forward Transconductance                              | VDS = 15V, ID = 25A                | -   | 34   | -    | S    |
| Dynamic Ch   | naracteristics                                        |                                    |     |      |      |      |
| Cirt         | Input Capacitance                                     | Vps = 25V, Vgs = 0V,               | -   | 3650 | -    | pF   |
| Cort         | Output Capacitance                                    | f = 1.0MHz                         | -   | 658  | -    | pF   |
| CrRT         | Reverse Transfer Capacitance                          |                                    | -   | 320  | -    | pF   |
| Qg           | Total Gate Charge                                     | VDS = 160V, ID = 50A               | -   | 244  | -    | nC   |
| Qgs          | Gate-Source Charge                                    | VGS = 10V (Note 4)                 | -   | 16   | -    | nC   |
| Qgd          | Gate-Drain Charge                                     |                                    | -   | 144  | -    | nC   |
| Rg           | Gate resistance                                       | f=1 MHz, open drain                | -   | 0.7  | -    | Ω    |
| Switching C  | Characteristics                                       |                                    |     |      |      |      |
| td(on)       | Turn-On Delay Time                                    | VDD = 100V, ID = 50A               | -   | 53   | -    | ns   |
| tr           | Turn-On Rise Time                                     | Rg = 25Ω, Vgs = 10V                | -   | 65   | -    | ns   |
| td(off)      | Turn-Off Delay Time                                   | (Note 4)                           | -   | 689  | -    | ns   |
| tf           | Turn-Off Fall Time                                    |                                    | _   | 230  | -    | ns   |
| Drain-Source | ce Diode Characteristics and Maximum Ratir            | ngs                                |     |      |      |      |
| Is           | Maximum Continuous Drain-Source Diode Forward Current |                                    | -   | -    | 50   | Α    |
| Ism          | Maximum Pulsed Drain-Source Diode Forwar              | d Current                          | -   | -    | 200  | Α    |
| VsD          | Drain-Source Diode Forward Voltage                    | Vgs = 0V, Is = 25A                 | -   | 0.9  | 1.4  | V    |
| trr          | Reverse Recovery Time                                 | Vgs = 0V, Vps = 100V               | -   | 250  | -    | ns   |
| Qrr          | Reverse Recovery Charge                               | Is = 25A, dlr/dt =100A/µs          | -   | 2.5  | -    | μC   |
| Irrm         | Peak Reverse Recovery Current                         | 1                                  | -   | 20   | - 1  | Ā    |


#### NOTES:

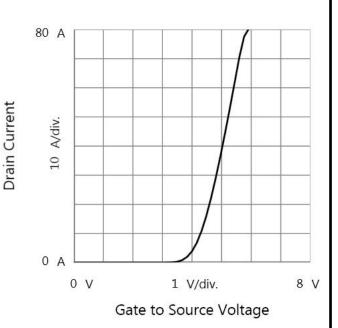
- 1. Repetitive Rating: Pulse width limited by maximum junction temperature 2.  $I_{AS}$ =12.5A, VDD=50V,  $R_{G}$ =25 $\Omega$ , Starting TJ=25 °C 3.  $I_{SD}$ ≤1D, di/dt ≤200A/us,  $V_{DD}$  ≤ BV<sub>DRT</sub>, Starting TJ = 25 °C 4. ERTentially Independent of Operating Temperature Typical Characteristics




# **Typical Performance Characteristics**



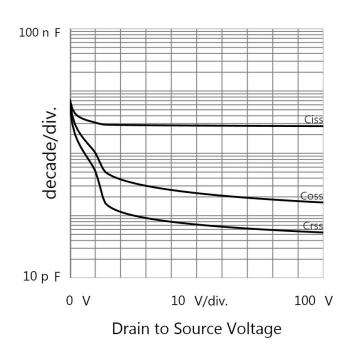




Safe operating area TC=25 °C parameter: tp

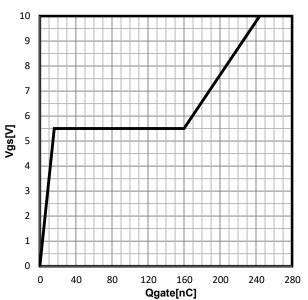


Typ. output characteristics  $T_j$ =25 °C parameter: V<sub>GS</sub>

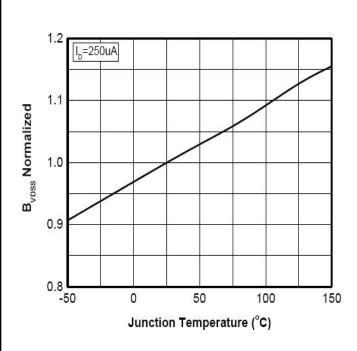



Typ. transfer characteristics

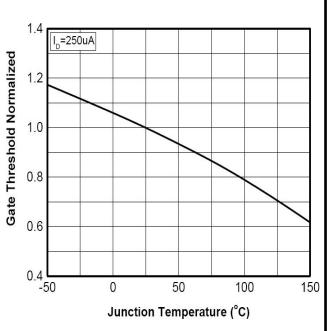





# **Typical Performance Characteristics**


Typ. capacitances

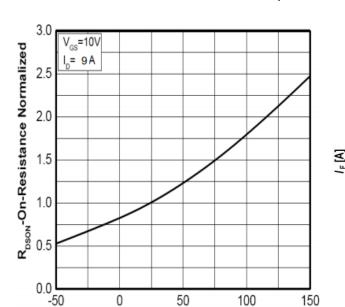



Typ. gate charge characteristics

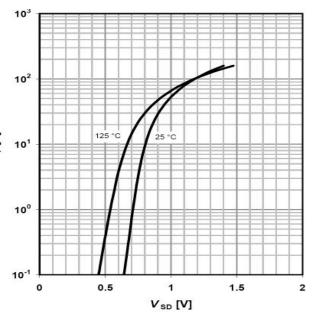


### Drain-source breakdown voltage



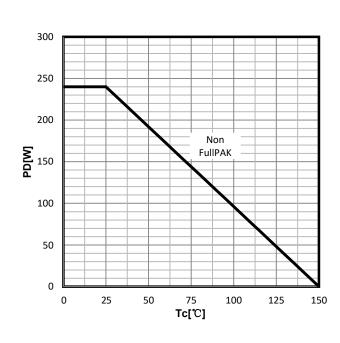

## Normalized $V_{\text{GS(th)}}$ characteristics



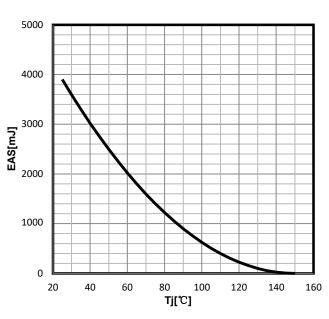



# **Typical Performance Characteristics**

Normalized on resistance vs temperature



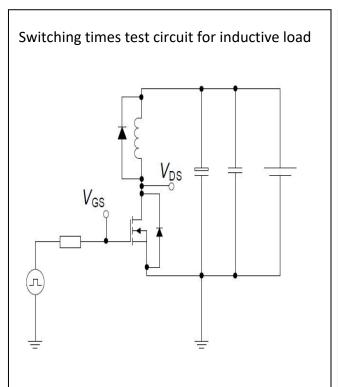

Forward characteristics of reverse diode

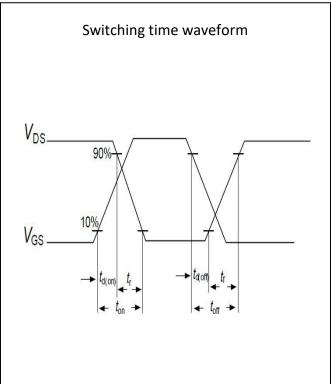




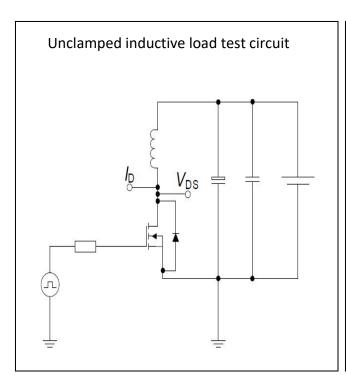

Junction Temperature (°C)

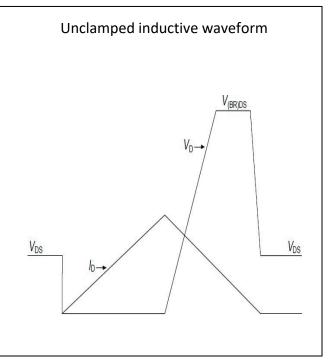



### Avalanche energy





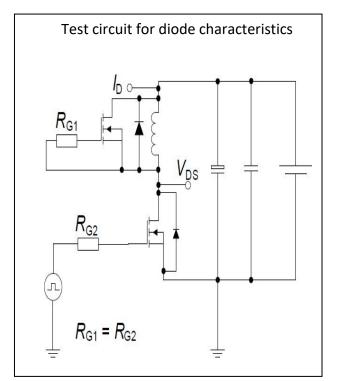


### **Test circuits**

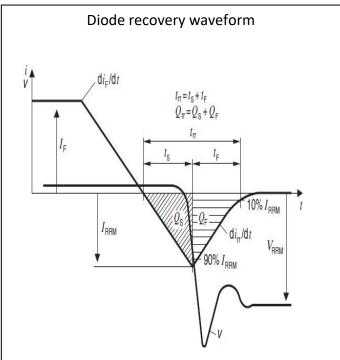

Switching times test circuit and waveform for inductive load





Unclamped inductive load test circuit and waveform

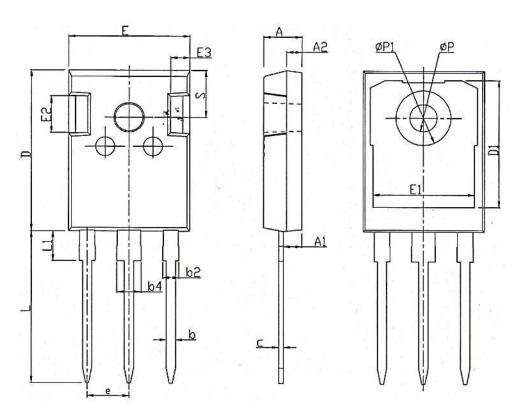


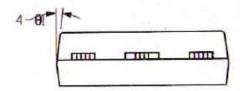






# **Test circuits**

# Test circuit and waveform for diode characteristics



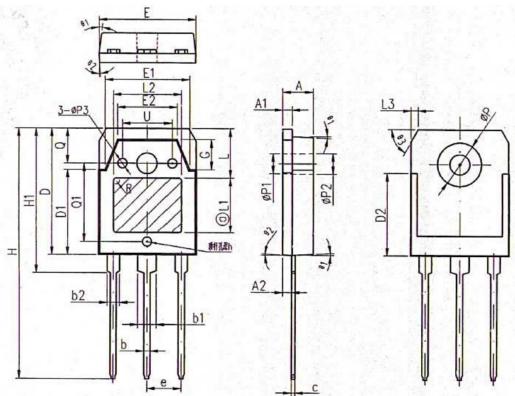



# Package Outline

TO-247






### COMMON DIMENSIONS

| SYMBOL | MM      |        |       |  |
|--------|---------|--------|-------|--|
| SIMBOL | MIN     | NOM    | MAX   |  |
| A      | 4.80    | 5.00   | 5.20  |  |
| A1     | 2.21    | 2.41   | 2.61  |  |
| A2     | 1.85    | 2.00   | 2.15  |  |
| b      | 1.11    | 1.21   | 1.36  |  |
| b2     | 1.91    | 2.01   | 2.21  |  |
| b4     | 2.91    | 3.01   | 3.21  |  |
| с      | 0.51    | 0.61   | 0.75  |  |
| D      | 20.70   | 21.00  | 21.30 |  |
| D1     | 16.25   | 16.55  | 16.85 |  |
| E      | 15.50   | 15.80  | 16.10 |  |
| E1     | 13.00   | 13.30  | 13.60 |  |
| E2     | 4.80    | 5.00   | 5.20  |  |
| E3     | 2.30    | 2.50   | 2.70  |  |
| е      | 5.44BSC |        |       |  |
| L      | 19.62   | 19.92  | 20.22 |  |
| L1     | 8       | 727    | 4.30  |  |
| ΦР     | 3.40    | 3.60   | 3.80  |  |
| ФР1    | *       | . (20) | 7.30  |  |
| S      | 6.15BSC |        |       |  |



# Package Outline

TO-3P



| YOUR DON'T | DISCONDENSE |
|------------|-------------|
| CHARACTER  | IMENSIONS   |

| SYMBOL | MM        |          |       |  |
|--------|-----------|----------|-------|--|
| SYMBOL | MIN       | NOM      | MAX   |  |
| A      | 4.60      | 4.80     | 5.00  |  |
| A1     | 1.40      | 1.50     | 1.60  |  |
| A2     | 1.33      | 1.38     | 1.43  |  |
| b      | 0.80      | 1.00     | 1.20  |  |
| b1     | 2.80      | 3.00     | 3.20  |  |
| b2     | 1.80      | 2.00     | 2.20  |  |
| c      | 0.50      | 0.60     | 0.70  |  |
| D      | 19.75     | 19.90    | 20.05 |  |
| D1     | 13.70     | 13.90    | 14.10 |  |
| D2     | 12.90REF  |          |       |  |
| E      | 15.40     | 15.60    | 15.80 |  |
| E1     | 13.40     | 13.60    | 13.80 |  |
| E2     | 9.40      | 9.60     | 9.80  |  |
| e      | 5.45 TYP  |          |       |  |
| G      | 4.60      | 4.80     | 5.00  |  |
| Н      | 40.30     | 40.50    | 40.70 |  |
| H1     | 23.20     | 23.40    | 23.60 |  |
| h      | 0.05      | 0.10     | 0.15  |  |
| L      | 7.40 TYP  |          |       |  |
| Ll     |           | 9.00 TYP |       |  |
| L2     | 11.00 TYP |          |       |  |
| L3     | 1.00 REF  |          |       |  |
| ФР     | 6.90      | 7.00     | 7.10  |  |
| ФР1    |           | 3.20 REF | fini: |  |
| ФР2    | 3.50 REF  |          |       |  |
| ФР3    | 1.40      | 1.50     | 1.60  |  |
| R      | 0.50 REF  |          |       |  |
| Q      | 5.00 REF  |          |       |  |
| Q1     | 12.56     | 12.76    | 12.96 |  |
| Ü      | 7.8       | 8        | 8.2   |  |
| 91     | 5°        | 7°       | 9°    |  |
| θ2     | 1°        | 3°       | 5°    |  |
| θ3     | 60° REF   |          |       |  |



#### DISCLAIMER

RONGTECH reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, RONGTECH does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, RONGTECH hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling RONGTECH products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify RONGTECH for any damages arising or resulting from such use or sale.

### **INFORMATION**

For further information on technology, delivery terms and conditions and prices, please contact RONGTECH office or website(www.rongtechpower.com).