

Rongtech has series Multi-EPI Super-Junction power MOSFET platforms for voltage up 500V to 1000 volts, both with design service and manufacturing capability, including cell, termination design and simulation.

The RTW600V 77A power MOSFET is a Low voltage N channel Multi-EPI Super-Junction power MOSFET sample with advanced technology to have better characteristics, such as fast switching time, low Ciss and Crss, low on resistance and excellent avalanche characteristics, making it especially suitable for applications which require superior power density and outstanding efficiency.

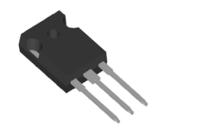
ORDERING INFORMATION Industrial Range: -40° C to +125° C

Features

•New revolutionary high voltage technology

Super Junction MOSFETs

- •Better R_{DS(on)} in TO-247
- Ultra Low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- Ultra low effective capacitances
- Intrinsc fast-recovery body diode
- Pb-free lead planting
- •R_{DS(ON)}=0.041Ω @VGS = 10V


VDS = 600V

ID (@ VGS=10V) = 35A

APPLICATIONS

- Consumer
- •EV Charger
- PFC stages for server & telecom
- SMPS
- •UPS
- Solar
- Lighting

Order Part No.PackageRTW77N60SDTO-247, Pb-FreeRTP77N60SDTO-3P, Pb-Free

TO-247

TO-3P

www.rongtechpower.com

Maximum rating sat Tj = 25 $\,^\circ\!\mathrm{C}$, unlessotherwise specified.

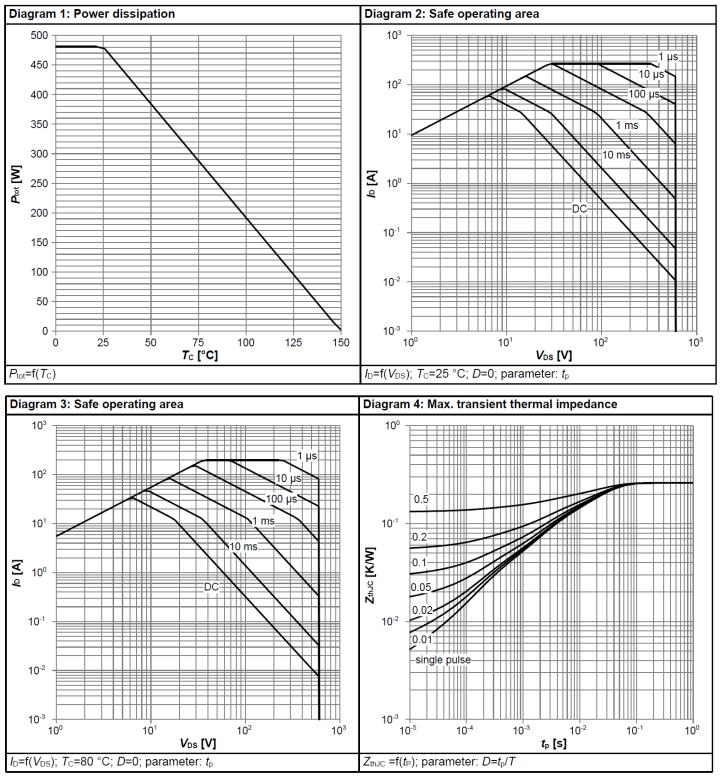
Symbol	Parameter	RTW77N60SD	Unit
V _{DSS}	Drain-Source Voltage	600	V
I _D	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)	77* 45*	А
I _{DM}	Drain Current - Pulsed (Note 1)	260	А
V _{GSS}	Gate-Source voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	1950	
I _{AR}	Repetitive Avalanche Current (Note 1)	13	А
E _{AR}	Repetitive Avalanche Energy (Note 1)	2.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	15	V/ns
dVds/dt	Drain Source voltage slope (Vds=480V)	50	V/ns
P _D	Power Dissipation (TC = 25°C)	400	W
Tj, T _{stg}	Operating and Storage Temperature Range	-55 to +150	°C
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds	300	°C

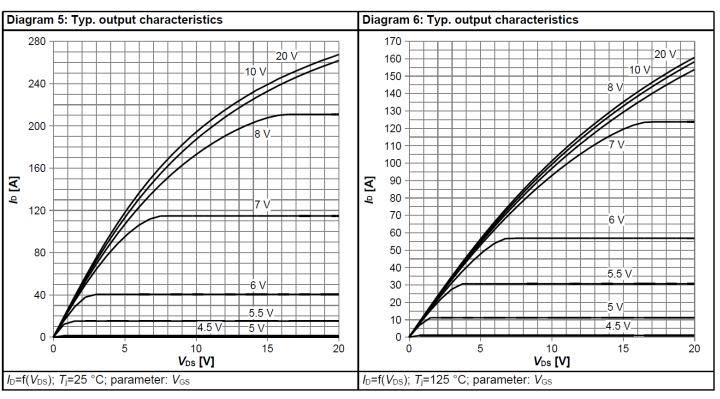
1) Limited by Tj,max. Maximum duty cycle D=0.75

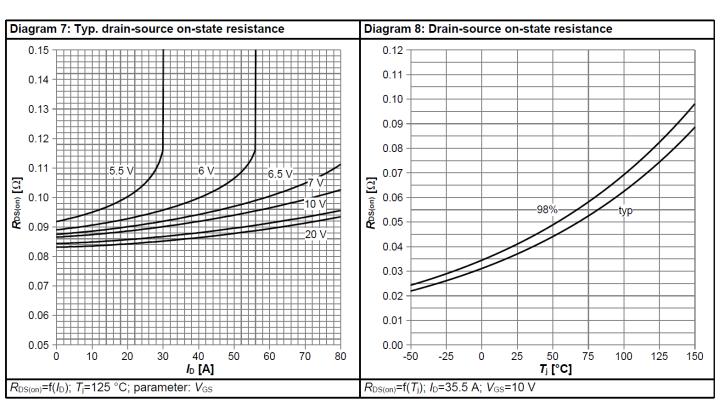
2) Pulse width tp limited by Tj,max

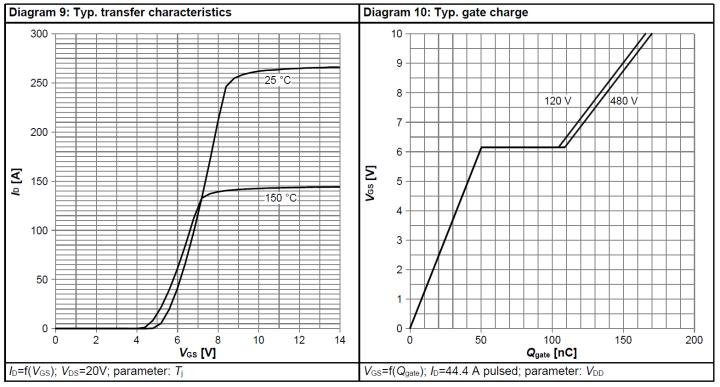
3) Identical low side and high side switch with identical RG; Vpeak<V(BR)DSS ; Tj<Tj.max

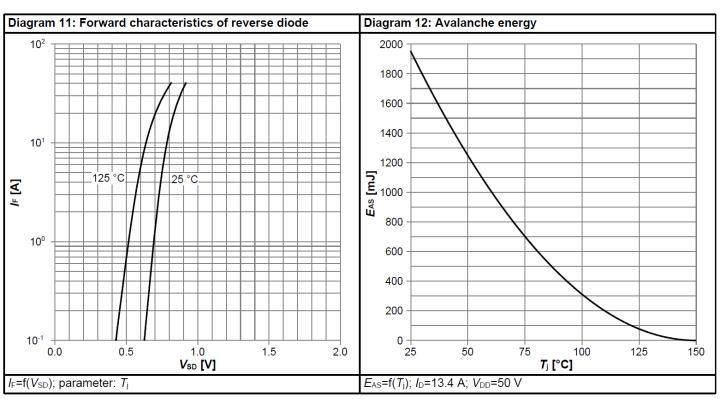
Thermal Characteristics

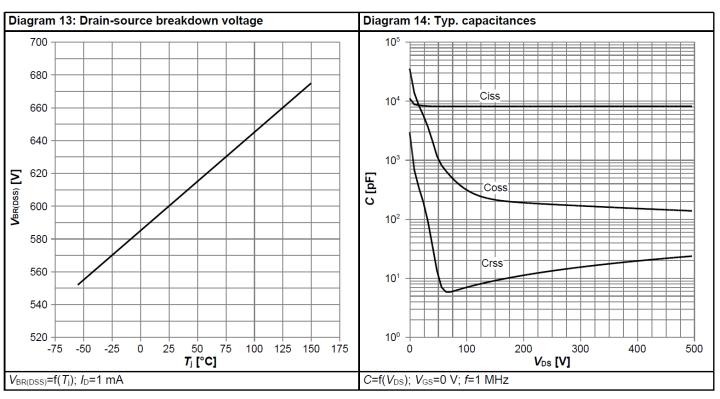

Symbol	Parameter	RTW77N60SD	Unit
R _{θJC}	Thermal Resistance, Junction-to-Case	0.32	°C/W
R _{θCS}	Thermal Resistance, Case-to-Sink Typ.	0.5	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	62	°C/W

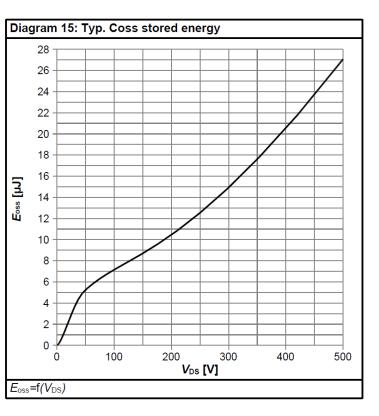

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Charact	eristics					
BVDSS	Drain-Source Breakdown Voltage	$V_{GS} = 0V, ID = 250 \mu A, \\ T_J = 25^{\circ}C$	600			V
		$V_{GS} = 0V, ID = 250\mu A, T_J = 150^{\circ}C$		650		V
∆BVdss/∆Tj	Breakdown Voltage Temperature Coefficient	$ID = 250\mu A$, Referenced to $25^{\circ}C$		0.6		V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 600V, VGS = 0V -TJ = 25°C -TJ = 150°C		 1000	4	μA μA
IGSSF	Gate-Body Leakage Current, Forward	Vgs = 30V, Vds = 0V			100	nA
Igssr	Gate-Body Leakage Current, Reverse	Vgs = -30V, Vds = 0V			-100	nA
On Charact	eristics					
VGS(th)	Gate Threshold Voltage	VDS = VGS, ID = 250µA	2.5		4.5	V
RDS(on)	Static Drain-Source On-Resistance	Vgs = 10V, Id = 35A		35	41	mΩ
gfs	Forward Transconductance	VDS = 40V, ID = 35A		30		S
Dynamic Ch	naracteristics	1				
Ciss	Input Capacitance	VDS = 25V, VGS = 0V, f = 1.0MHz		6200	-	pF
Coss	Output Capacitance	= 1.0MH2		300	-	pF
Crss	Reverse Transfer Capacitance			12		pF
Switching C	Characteristics					
td(on)	Turn-On Delay Time	VDD = 480V, ID = 35A RG = 20Ω (Note 4)		39		ns
tr	Turn-On Rise Time			20		ns
td(off)	Turn-Off Delay Time			100		ns
tr	Turn-Off Fall Time			5		ns
Qg	Total Gate Charge	VDS = 480V, ID = 35A VGS = 10V (Note 4)		300	-	nC
Qgs	Gate-Source Charge			59		nC
Qgd	Gate-Drain Charge			195		nC
Drain-Sourc	ce Diode Characteristics and Maximum Ratin	gs				
ls	Maximum Continuous Drain-Source Diode Fo	Maximum Continuous Drain-Source Diode Forward Current			77	А
Isм	Maximum Pulsed Drain-Source Diode Forward	Maximum Pulsed Drain-Source Diode Forward Current			260	А
Vsd	Drain-Source Diode Forward Voltage	VGS = 0V, IS = 35A		0.9	1.5	V
trr	Reverse Recovery Time	Vgs = 0V, Is = 35A dlF/dt =100A/µs		250		ns
Qrr	Reverse Recovery Charge			19		μC

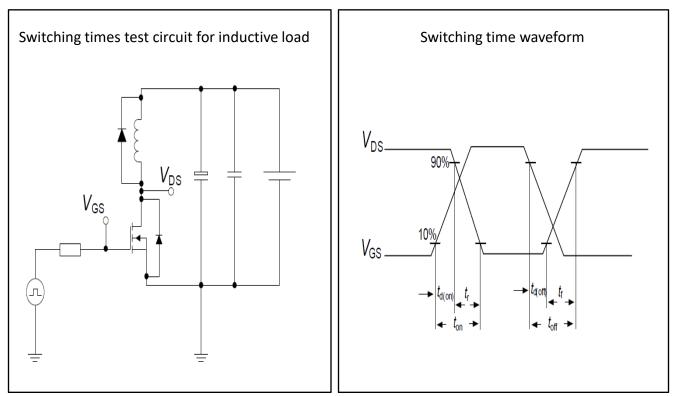

1) Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS 2) Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS

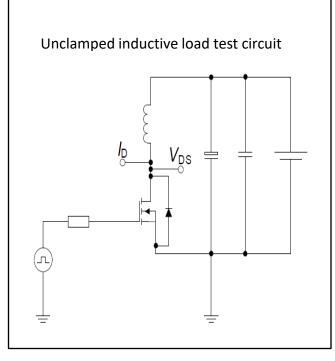


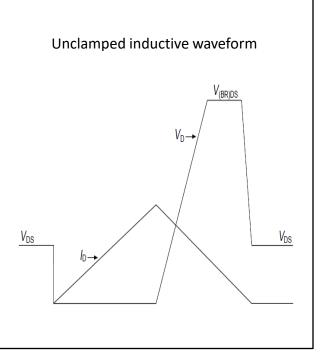




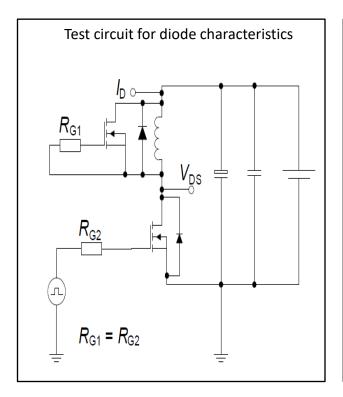


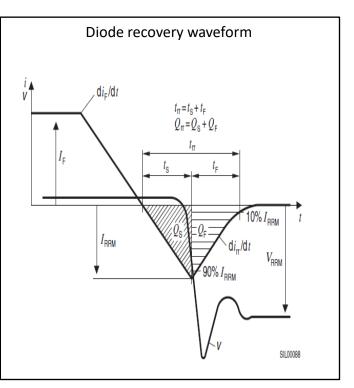


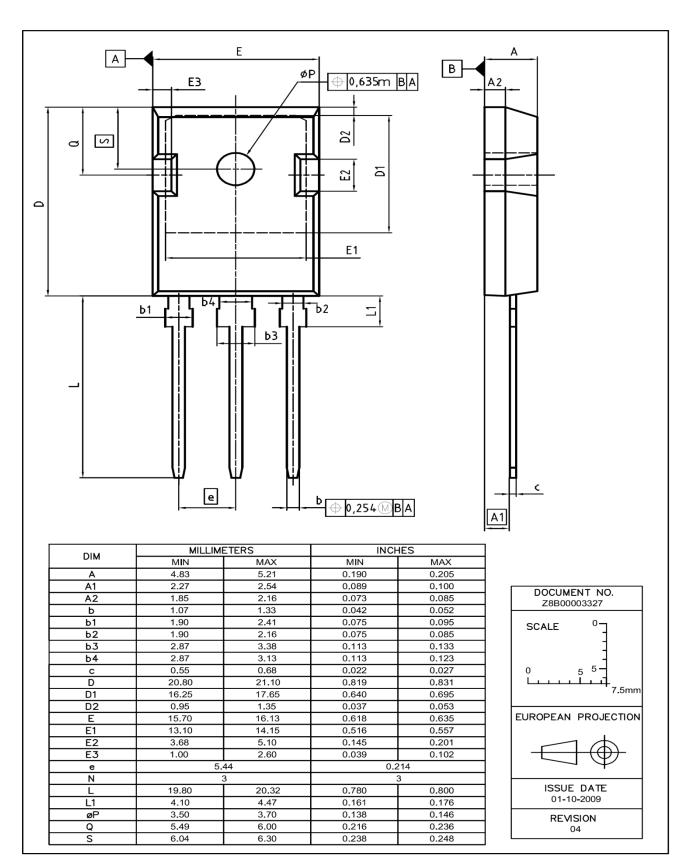




Switching times test circuit and waveform for inductive load


Unclamped inductive load test circuit and waveform





Test circuit and waveform for diode characteristics

