WASTEWATER TREATMENT AND RECYCLING

TECHNOLOGIES AND APPLICATIONS

OCT - 2019

AGENDA

- Introduction of wastewater and types, Some facts about wastewater
- Pollutants, their effects and need to reduction
- Technologies for wastewater treatment
- Technologies comparison
- Instrumentation and Equipments selection in wastewater treatment
- Emerging issues and trends in wastewater treatment
- Wastewater reclamation
- Energy from wastewater, Conclusion Q&A

www.clear-ion.com/www.clear-ion.net

WHAT IS WASTEWATER ?

www.clear-ion.com/www.clear-ion.net

Faridabad, India

WASTEWATER INTRODUCTION • Any used water from a Domestic, Commercial and Industrial process is wastewater • Approximately 90% water becomes wastewater in domestic or similar process Un-purportedly wasted fresh water and storm water ru off is also wastewater Wastewater may or mayn't have pollution strength

www.clear-ion.com/www.clear-ion.net

Faridabad, India

WASTEWATER TYPES

INDUSTRIAL

Industrial Trade Effluents

- -Have different characters
- Mild to tough in polluting strength
- May or mayn't be biodegradable

Nature Generated

- -Storm Water
- No polluting strength

Municipal Wastewater

/Sewage

- -Typical uniform character
- Easily biodegradable

clearions28@gmail.com (M) 9811323029

www.clear-ion.com/www.clear-ion.net

POLLUTING STRENGTH OF WASTEWATER

Physical Constituents

- Color, both inorganic and organic nature
- Odor, from dissolved gases and aromatic compounds
- Particulates, like rags, leaves, fruits and vegetables, used objects etc.
- Temperature, this is process and environment dependent

Chemical Constituents

- Organic, like aromatic, aliphatic, carbohydrates and fatty compounds
- Inorganic, like nitrogen, phosphorus and metal compounds
- Gases, dissolved like ammonia and emanating like hydrogen sulphide
- Excess acidity or basicity

Biological Constituents

- Bacteria of various types
- Virus of various types
- Protozoa and cysts
- Living or dead macro creatures
- Small plants like algae

www.clear-ion.com/www.clear-ion.net

DOMESTIC WASTEWATER CHARECTERIZATION-1

Parameter	Unit	Weak	Medium	Storm
Total Solids (TS)	Mg/Liter	350	720	1250
Dissolved Solids (TDS)	Mg/Liter	250	500	800
Fixed	Mg/Liter	145	300	525
Volatile	Mg/Liter	105	200	325
Suspended Solids (TSS)	Mg/Liter	100	220	350
Fixed	Mg/Liter	20	55	75
Volatile	Mg/Liter	80	165	275
Settleable Solids	Mg/Liter	5	10	20
BOD5, at 200C	Mg/Liter	110	220	400

TSS & BOD are key parameters

www.clear-ion.com/www.clear-ion.net

DOMESTIC WASTEWATER CHARECTERIZATION-2

Parameter	Unit	Weak	Medium	Storm
Total Organic Carbon (TOC)	Mg/Liter	80	160	290
Chemical Oxygen Demand (COD)	Mg/Liter	250	500	1000
Total Nitrogen (TKN)		20	40	85
Organic	Mg/Liter	8	2	35
Free Ammonia	Mg/Liter	12	25	50
Nitrites	Mg/Liter	Nil	Nil	Nil
Nitrates	Mg/Liter	Nil	Nil	Nil
Total Phosphorus (TP)	Mg/Liter	4	8	15
Organic	Mg/Liter	1	3	5
Inorganic	Mg/Liter	3	5	10
Total Phosphorus (TP) Organic Inorganic	Mg/Liter Mg/Liter Mg/Liter	4 1 3	8 3 5	15 5 10

COD & TKN are key parameters

www.clear-ion.com/www.clear-ion.net

DOMESTIC WASTEWATER CHARECTERIZATION-3

Parameter	Unit	Weak	Medium	Storm
Chloride [#] , as Cl	Mg/Liter	250	500	1000
Sulphate [#] , as SO ₄	Mg/Liter	20	40	85
Alkalinity, as CaCO ₃	Mg/Liter	8	5	35
Oil and Grease (O&G)	Mg/Liter	12	25	50
Total Coliform	MPN/100 MI	10 ⁶ -10 ⁷	10 ⁷ -10 ⁸	10 ⁸ -10 ⁹
Volatile Organic Compounds (VOCs)	Mg/Liter	Nil	Nil	Nil

#Water source dependent

O&G is key parameters

www.clear-ion.com/www.clear-ion.net

Faridabad, India

POLLUTANTS CONSEQUENCES

www.clear-ion.com/www.clear-ion.net

HOW HARMFUL ARE POLLUTANTS

Organic and Inorganic Matter

- Increases turbidity, BOD & TOC
- Directly or indirectly depletes free oxygen levels in water bodies
- Creates odiferous compounds directly or indirectly

Particulates

- Restricts free movement of water and reduces general acceptance
- Makes water unsuitable for various uses
- Emanates pollution over a long period till degrades completely

Temperature

- Directly troubles aquatic life if too high or low

Oil, Grease and Floating Material

- Directly depletes oxygen level
- Reduces natural oxygen dissolution
 Increases BOD & COD, troubles aquatic life

Nutrients- Nitrogen & Phosphorus

- Directly and indirectly depletes oxygen level
- Supports Eutrophication and troubles aquatic life

Untreated wastewater affects complete environmental chain

clearions28@gmail.com (M) 9811323029

www.clear-ion.com/www.clear-ion.net

HOW HARMFUL ARE POLLUTANTS

Dissolved Gases

- Some gases are toxic to life like Ammonia
- Some gases are toxic as well as odiferous like Hydrogen Sulphide
- Gases also affects water chemistry, CO2 and Ammonia affects pH balance

Excess acidity or basicity

- Makes water unsuitable for various uses and natural biodegradation
- Negatively impacts water chemistry and troubles aquatic life

Biological Constituents

- Causes mild to severe water borne diseases like cholera, hepatitis, typicaid etc
- Adds to organic load

Dissolved Solids

- Makes water unsuitable for irrigation and other uses
- Increases BOD & COD levels

Suspended and Settleable Solids

- Increases turbidity, hampers appearance and reduces general acceptance
- Increases BOD & COD levels
- Restricts free movement of water

Fresh water sources are rapidly polluting

www.clear-ion.com/www.clear-ion.net

Faridabad, India

TREATMENT TECHNOLOGIES

www.clear-ion.com/www.clear-ion.net

TREATMENT METHODS

Biological aerobic

- Activated sludge process Extended aeration, oxidation ditch, SBR, MBBR, MBR, SAFF and FAB etc.
- Trickling filters
- Rotating biological contactors
- Aerobic lagoons

• Biological anaerobic

- Septic tanks
- Soak pits
- Anaerobic lagoons
- Anaerobic filters
- Anaerobic reactors- UASB, Fixed film, fluidized film, fluidized bed, conventional Digesters & SMAR etc
- Biological Constituents
 - Bacteria of various types

Biological Treatment is mild to nature

www.clear-ion.com/www.clear-ion.net

Faridabad , India

TREATMENT CONSIDERATIONS

- -Understanding of prevailing regulatory requirements
- Degree of target treatment for disposal or end use
- Design capacity, period and future expansion
- Wastewater flow rates (Peak, Average, Minimum)
- Wastewater characteristics and fluctuations
- Due consideration to wastewater generation process
- Climatic conditions
- Degree of automatic and instrumentation for target treatment
- Available space and height constraint
- Aesthetics and possible odour issues, nearby activities and possible conflicts
- Process refusals quantity, treatment and disposal

Right Treatment selection is half the battle won

www.clear-ion.com/www.clear-ion.net

clearions28@gmail.com

(M) 9811323029

Faridabad, India

WHERE ENERGY GOES

Energy is the major consideration in wastewater treatment plants operation cost

- PreTreatment
- Aeration
- Pumping
- SludgeTreatment
- Mixing/Agitation
- PostTreatment
- Miscellaneous

Aeration and pumping consumes >50% power

www.clear-ion.com/www.clear-ion.net

TECHNOLOGIES COMPARISON

www.clear-ion.com/www.clear-ion.net

TECHNOLOGIES COMPARISON-1

Parameter	Lagoons	Extended Aeration	SBR	MBR	MBBR & SAFF	UASB+EA
Foot print	High	High	Medium	Low	Low	Medium
Energy Consumption	Low (KWH 0.5/m ³)	High (KWH 1.8-2.0/m ³)	Medium (KWH 1-1.5/m³)	Medium (KWH 1-1.5/m³)	High (KWH 1.5-1.8/m³)	High (KWH 1.5-1.8/m ³)
Operational issues	Low	High	High	Medium	High	High
Capital cost	Low	Medium	Medium	High	Medium	Medium
Operation cost	Low (Rs. 10-15/m³)	High (Rs. 20-25/m³)	Medium (Rs. 15-18/m³)	Medium (Rs. 15-20/m³)	Medium (Rs. 15-20/m³)	Medium (Rs. 15-20/m³)
Manual attention	Low	High	Medium	Low	High	High
Sludge Generation	Low	High	Medium	Medium	Medium	Medium
Installation time	Medium	High	Low	High	Medium	Medium
Efficiency BOD Removal	60-80%	90-95%	90-95%	95-98%	90-95%	90-95%

It's a trade off between cost & efficiency

www.clear-ion.com/www.clear-ion.net

TECHNOLOGIES COMPARISON-2

Parameter	Lagoons	Extended Aeration	SBR	MBR	MBBR & SAFF	UASB+EA
Hydraulic Retention Time	3-7 Days	24-28 Hrs	NA	8-10 Hrs	10-12 Hrs	18-28 Hrs
Sludge Age (SRT in Days)	NA	20-30 Days	30-40 Days	30-40 Days	NA	20-30 Days
BOD Loading Rate (Kg/m³/Day)	0.03-0.05	0.3-0.4	NA	0.6-0.8	0.5-0.6	0.3-0.4
F:M	NA	0.05-0.15	NA	0.05-0.15	NA	0.05-0.15
Oxygen Requirement (ppm)	Natural oxygen	0.2-0.4 ppm	NA	0.2-0.4 ppm	0.2-0.4 ppm	0.2-0.4 ppm
BOD after Polishing (ppm)	<50	<30	<30	<10	<30	<30

All Technologies have their pros and cons

www.clear-ion.com/www.clear-ion.net

CAPITAL COST REQUIREMENT

Except MBR other prevailing technologies hovers around same cost

www.clear-ion.com/www.clear-ion.net

Faridabad, India

SPACE REQUIREMENT

MBRs are most efficient on foot print

www.clear-ion.com/www.clear-ion.net

WASTEWATER ISSUES AND TRENDS

www.clear-ion.com/www.clear-ion.net

Faridabad , India

EMERGING TRENDS-1

- Point of source treatment
- Biological Vs Chemical
- New technologies
- More reuse acceptance
- Awareness & sensitization
- Long & short term strategies
- Realistic goals
- Law Vs Willingness
- Dual supply network
- More PPP
- Poor water mgt. Vs Scarcity
- Combined approach
- Anaerobic Vs Aerobic
- Energy recovery
- MOCs and automation

Trends have been phenomenal in the last decade

www.clear-ion.com/www.clear-ion.net

Faridabad , India

EMERGING TRENDS-2

- Zero liquid discharge
- Reuse as a policy
- Stricter regulations
- Alternative water sources
- Energy efficiency
- Lesser foot print
- Cleaner, low sludge technologies
- Membranes are replacing conventional treatments
- Plastics replacing metals
- UV & Ozone replacing chlorine
- Higher automation
- Government for reuse
- Organized sector is in
- Mass sensitization

Focus is shifting from compulsion to willingness

www.clear-ion.com/www.clear-ion.net

NUTRIENT REMOVAL - NITROGEN

- Total nitrogen is present in sewage in the rage of 50-75 ppm
- It is present in the form of Ammonia NH₃, Ammonia NH₄, Nitrite NO₂ and Nitrate NO₃
- Nitrate limit is 50 ppm in discharge water
- Nitrogen (as nitrate) and Phosphorus (as phosphate) to main in the treated water provided food for aquatic plants (phytoplankton) like algae & -----
- This growth of excess phytoplankton is called 'Eutrophication
- Excess phytoplankton depletes oxygen level in the water stream, known as 'Hypoxia'
- Oxygen depleting troubles zooplanktons like fishes

N & P are macro nutrients for plants

www.clear-ion.com/www.clear-ion.net

Faridabad, India

EUTRIFIED WATER BODY

N & P are macro nutrients for plants

www.clear-ion.com/www.clear-ion.net

EUTROPHICATION

www.clear-ion.com/www.clear-ion.net

Faridabad, India

HOW TO GET RID OF NITROGEN?

- Consider suitable provisions in the biological treatment. Some N&P is also required for aerobic synthesis (100BOD:5N:1P)
- There are many variations to achieve nitrogen reduction, all needs nitrification followed by de-nitrification

Nitrogen can be removed in biological process

www.clear-ion.com/www.clear-ion.net

NUTRIENT REMOVAL -PHOSPHORUS

- Municipal wastewater may contain from 5 to 20 mg/l of total phosphorous
- 1-5 mg/l is organic and the rest in inorganic
- Normally secondary treatment can only remove 1-2 mg/l
- Excess of phosphorous is discharged in the final effluent, causing eutrophication
- New rules asks P discharges limit into water bodies as 2 mg/l

If inadequate, N&P are added to biological treatment

www.clear-ion.com/www.clear-ion.net

PHOSPHORUS REMOVAL

- Biological phosphorus reduction
 - Anoxic step converts organic phosphorus to orthophosphate
 - During aerobic growth, orthophosphate is taken up by organisms during growth and additional phosphate is converted to polyphoshate which accumulates in the biomass
- Chemical phosphorus removal
 - Lime, alum & ferric are widely used in precipitating phosphates
 - Basic reactions are

10 Ca2 + + 6 PO43 - + 2 OH- \leftarrow >Ca10(PO4)*6(OH)2 Al3+ + HnPO43-n \leftarrow >AlPO4 + nH+ Fe3+ + HnPO43-n \leftarrow > FePO4 + nH+

Chemical process is essential for P removal

www.clear-ion.com/www.clear-ion.net

Faridabad, India

SPACE CONSTRAINT

Land is at premium in metro cities
Fortunately the most efficient technologies are also space saving
Here is the space comparison with respect to extended aeration

Space and height is becoming major consideration

www.clear-ion.com/www.clear-ion.net

WASTEWATER RECLAMATION

www.clear-ion.com/www.clear-ion.net

CONSIDERATIONS

- First thing first ...know the country's regulations on reclamation. In India MOEF
 & CPCB are regulatory authorities
- So far direct potable uses or direct human application is not permitted in India.
- Fortunately, above areas need little water, approx 5-10% of total need
- Irrigation is the largest consumer at approx 80%, hence suits most
- Industrial processes are the second choice consuming approx 15-20%
- Third most suitable is recreation activities
- It is important to know the degree of treatment required for the end use
- The selection of tertiary treatment or ERS should be considered

Reclamation is the key to water scarcity

www.clear-ion.com/www.clear-ion.net

Faridabad , India

HOW TO RECLAIM?

Biological Treatment

Polishing/Clarification

Filtration

Multistage Disinfection

Reverse Osmosis

Ultra-filtration

End use decides degree of treatment

www.clear-ion.com/www.clear-ion.net

MODEL

World famous NEWater plant, Singapore follows below multi barrier approach

The first barrier is the conventional wastewater treatment process whereby the used water is treated in the water Reclamation Plants.

<u>The second barrier</u> and first stage of the NEWater production process, uses microfiltration/ultrafiltration to filter out suspended solids, colloidal particles, disease causing bacteria, some viruses and protozoan cysts. The filtered water that goes through the membrane contains only dissolved salts and organic molecules.

<u>The third barrier</u> and second stage of the NEWater production process, utilizes reverse osmosis (RO). RO filters out undesirable contaminants such as bacteria, viruses, heavy metals, nitrates, chlorides, sulfates, disinfection by-products, aromatic hydrocarbons, and pesticides. At this stage, the water is already of potable quality.

<u>The fourth barrier</u> and third stage of the NEWater production process, acts as safety precaution. UV disinfection is used to ensure that all organisms are inactivated and the purity of the product water guaranteed. With the addition of some alkaline chemicals to restore the pH balance, the NEWater is ready for use.

Treated wastewater may exceed natural sources quality

www.clear-ion.com/www.clear-ion.net

Faridabad, India

BIOCHEMISTRY COD Balance Aerobic **COD** Balance Aerobic 10% Sludge 50% Sludge Organic \rightarrow CH₄ + CO₂ Pollution COD COD $+ 0_{2}$ Anaerobic microorga biogas 90% nisms CH₄ 50% Sludge Methanogens are chemoautotrophs Methanogens use a number of different ways to produce methane Using acetate that may be derived from the decomposition of cellulose: $CH_3COO^+ + H^- \longrightarrow CH_4 + CO_2$ +36 kJ mol⁻¹

Or using hydrogen and carbon dioxide produced by the decomposers:

 $4H_2CO2 \longrightarrow CH_4 + 2H_2O + 130.4 \text{ kJmol}^{-1}$

• Theoretically 1 kg COD destruction yields 0.55 kg Bio Gas

• In Bio Gas, methane is approx 60-80% depending on process efficiency

Enriched biogas is a boon for country like India

www.clear-ion.com/www.clear-ion.net

Faridabad, India

Dr. Gatze Lettinga developed first UASB in 1979

www.clear-ion.com/www.clear-ion.net

Awakening..... Isn't it

www.clear-ion.com/www.clear-ion.net

CLEAR-ION EXPERTS PVT. LTD.

Plot No. 28, Sector-24, Faridabad-121005 Phone No. 0129-2231500, 4023029 Mob. No. 9811323029, 8447884530 Email- www.clear-ion.com www.clear-ion.net

www.clear-ion.com/www.clear-ion.net