

-Stepper Driver -Stepper Motor

Corporate Profile

Kinco Automation is a leading supplier of industrial automation products and solutions from China with full line of automation products including industrial human machine interfaces (HMI), AC servo systems, stepper systems, PLC, VFD and field bus products. Kinco aims to help you achieve a leading position in your market.

Reliable partner of your success

- ☐ Gain the competitive edge
- ☐ Support your business
- ☐ Serve your needs

High standard of quality management

- □ 100% function and reliability test before delivery
- ☐ Quality control and tracking go through the full product life cycle
- ☐ Certificated process control and quality management capability

Proven performance

☐ Customers in over 40 countries and in diverse markets and sectors

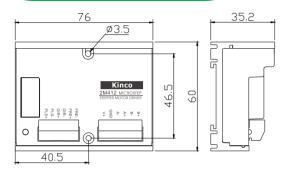
Perpetual innovation

- □ 8% of annual turnover invested in R&D
- ☐ Experienced international R&D teams
- Patent applications continue to rise every year
- ☐ Market-driven R&D: we organize our R&D activities around the voice from the customers

Kinco step	per driver 2M412
Kinco step	per driver 2M420
Kinco step	per driver 2M530
Kinco step	per driver 2M880N
Kinco step	per driver 2M1180N
Kinco step	per driver 2M2280N
Kinco step	per driver 3M458
Kinco step	per driver 3M880N
Kinco step	per driver 3M2280N
Kinco CAN	bus stepper driver FM860
Stepper Mo	tor 13
Kinco two-	phase stepper motor 42 series
Kinco two-	phase stepper motor 56 series
Kinco two-	phase stepper motor 86 series
Kinco two-	phase stepper motor 110 series
Kinco two-	phase stepper motor 130 series
Kinco three	e-phase stepper motor 57 series
Kinco three	e-phase stepper motor 85 series

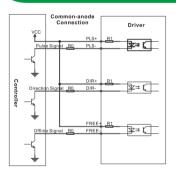
Stepper Driver 03

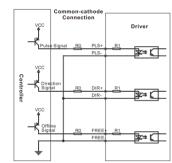
tion ---- 21


Denomination rules of stepper motor/driver Guide to model selection of stepper motors Model selection of stepper motors Installation instructions for stepper motors Selection table for stepper driver/motor Typical wiring diagram

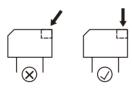
Kinco 2M420 Stepper Motor Driver (Two-phase Bipolar Micro Step)

- The maximum supply voltage can reach 40V:
- The bipolar constant current drive mode is taken, with a maximum drive current up to 1.2A per phase, which can drive any 42 series two-phase bipolar hybrid stepper motors with a current less than 1.2A;
- The drive output phase current of a motor can be regulated through the DIP switch, to match motors of different specifications;
- A DIP switch is used to set the automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- A dedicated control chip is used, with a maximum of 256/200 subdivisions. The subdivision
- function can be set by the DIP switch to ensure the best operation stability:
- Supporting offline function so that the output current of a motor can be cut off if necessary;
- Optical coupling devices are used for the isolation of the input circuit of the control signals to reduce interference of external noises.


Mechanical Dimensions Unit:



Technical Specifications


Supply voltage	12 ~ 40V DC
Output phase current	0.2 ~ 1.2A
Control signal input current	6 ~ 16mA
Cooling method	Natural air cooling
Operating environment	Avoid the environment with a great amount of metallic powder, oil mist, or erosive gases
Operating temperature	-10℃ ~ +45℃
Operating humidity	<85% (non-condensing or water drops)
Weight	0.13Kg

Typical Wring Diagram

Precautions

2. When the voltage of the control signal is 5V, then the resistors in the connection figure are 0Ω

in the connection figure are $2K \Omega$

Functions of DIP Switch

There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver. Please carefully read the reference before use. Do remember to cut off the power before changing the settings of the DIP switch.

The front view of the DIP switch is as follows:

Serial Number	Function of ON	Function of OFF	Remarks
DIP1~DIP4	Subdivision setting	Subdivision setting	
DIP5	Half current of static current	Full current of static current	
DIP6~DIP8	Output current setting	Output current setting	

The subdivision setting table			DIP1 is ON	DIP1 is OFF
DIP2	DIP3	DIP4	subdivision	subdivision
ON	ON	ON	N/A*	2
OFF	ON	ON	4	4
ON	OFF	ON	8	5
OFF	OFF	ON	16	10
ON	ON	OFF	32	25
OFF	ON	OFF	64	50
ON	OFF	OFF	128	100
OFF	OFF	OFF	256	200

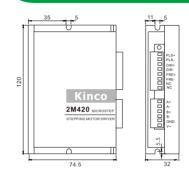
* N/A indicates invalid. The rotary switch is forbidden setting as N/A.

1. Please poke the DIP switch correctly as following figure

When the voltage of the control signal is 24V, then the resistors

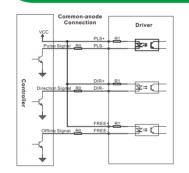
Current Regulation

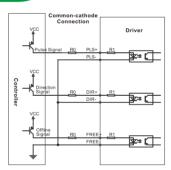
There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver Please carefully read the reference before use. Do remember to


The front view of the DIP switch is as follows:

The output phase current setting table						
DIP6	DIP7	DIP8	Output Current			
OFF	OFF	OFF	0.20A			
OFF	OFF	ON	0.35A			
OFF	ON	OFF	0.50A			
OFF	ON	ON	0.65A			
ON	OFF	OFF	0.80A			
ON	OFF	ON	0.90A			
ON	ON	OFF	1.00A			
ON	ON	ON	1.20A			

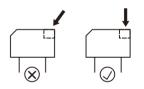
- The maximum supply voltage can reach 40V, which can provide better dynamic drive performance;
- The bipolar constant current drive mode is taken, with a maximum drive current up to 2.5A per phase, which can drive any 42 and 56 series two-phase bipolar hybrid stepper motors with a current less than 2.5A;
- The drive output phase current of a motor can be regulated through the DIP switch, to match motors of different specifications;
- A DIP switch is used to set the automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- A dedicated control chip is used, with a maximum of 256/200 subdivisions. The subdivision function
- can be set by the DIP switch, to ensure the best operation stability:
- Supporting offline function so that the output current of a motor can be cut off if necessary;
- Optical coupling devices are used for the isolation of the input circuit of the control signals to reduce interference of external noises.


Mechanical Dimensions Unit:r



Technical Specifications

Supply voltage	24 ~ 40V DC
Output phase current	0.3 ~ 2.5A
Control signal input current	6 ~ 16mA
Cooling method	Natural air cooling
Operating environment	Avoid the environment with a great amount of metallic powder, oil mist, or erosive gases
Operating temperature	-10℃ ~ +45℃
Operating humidity	<85% (non-condensing or water drops)
Weight	0.4Kg


Typical Wring Diagram

Precautions

1. Please poke the DIP switch correctly as following figure

- 2. When the voltage of the control signal is 5V, then the resistors in the connection figure are 0Ω .
- When the voltage of the control signal is 24V, then the resistors in the connection figure are $2K \Omega$

Functions of DIP Switch

There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver. Please carefully read the reference before use. Do remember to cut off the power before changing the settings of the DIP switch.

The front view of the DIP switch is as follows:

Serial Number	Function of ON	Function of OFF	Remarks
DIP1~DIP4	Subdivision setting	Subdivision setting	
DIP5	Half current of static current	Full current of static current	
DIP6~DIP8	Output current setting	Output current setting	

The si	ubdivision setting	DIP1 is ON	DIP1 is OFF	
DIP2	DIP3	DIP4	subdivision	subdivision
ON	ON	ON	N/A*	2
OFF	ON	ON	4	4
ON	OFF	ON	8	5
OFF	OFF	ON	16	10
ON	ON	OFF	32	25
OFF	ON	OFF	64	50
ON	OFF	OFF	128	100
OFF	OFF	OFF	256	200

^{*} N/A indicates invalid. The rotary switch is forbidden setting as N/A

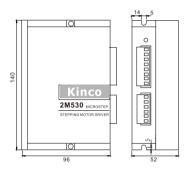
Current Regulation

There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver. Please carefully read the reference before use. Do remember to cut off the power before changing the settings of the DIP switch.

The front view of the DIP switch is as follows:

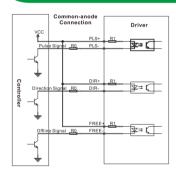
ļ								
ON	7	2	3	4	5	6	7	8

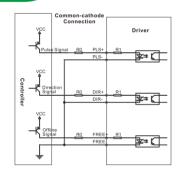
The output phase current setting table					
DIP6	DIP7	DIP8	Output Current		
ON	ON	ON	0.3A		
ON	ON	OFF	0.6A		
ON	OFF	ON	0.8A		
ON	OFF	OFF	1.2A		
OFF	ON	ON	1.4A		
OFF	ON	OFF	1.6A		
OFF	OFF	ON	2.0A		
OFF	OFF	OFF	2.5A		


03

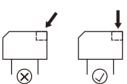
Kinco 2M880N Stepper Motor Driver (Two-phase Bipolar Micro Step)

- The maximum supply voltage can reach 48V;
- The bipolar constant current drive mode is taken, with a maximum drive current up to 3.5A per phase, which can drive any 56 and 86 series two-phase bipolar hybrid stepper motors with a current less than 3.5A;
- The drive output phase current of a motor can be regulated through the DIP switch, to match motors of different specifications:
- Supporting automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- A dedicated control chip is used, with a maximum of 256/200 subdivisions. The subdivision function can be set by the DIP switch, to ensure the best operation stability;
- Supporting offline function so that the output current of a motor can be cut off if necessary;
- Optical coupling devices are used for the isolation of the input circuit of the control signals to reduce interference of external noises.


Mechanical Dimensions Unit



Technical Specifications


Supply voltage	24 ~ 48V DC
Output phase current	1.2 ~ 3.5A
Control signal input current	6 ~ 16mA
Cooling method	Natural air cooling
Operating environment	Avoid the environment with a great amount of metallic powder, oil mist, or erosive gases
Operating temperature	-10℃ ~ +45℃
Operating humidity	<85% (non-condensing or water drops)
Weight	0.7Kg

Typical Wring Diagram

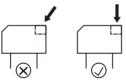
Precautions

2. When the voltage of the control signal is 5V, then the resistors in the connection figure are 0 \(\Omega \).

Functions of DIP Switch

There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver. Please carefully read the reference before use. Do remember to cut off the power before changing the settings of the DIP switch.

The front view of the DIP switch is as follows:



Serial Number	Function of ON	Function of OFF	Remarks
DIP1~DIP4	Subdivision setting	Subdivision setting	
DIP5	Half current of static current	Full current of static current	
DIP6~DIP8	Output current setting	Output current setting	

The s	ubdivision setting	DIP1 is ON	DIP1 is OFF	
DIP2	DIP3	DIP4	subdivision	subdivision
ON	ON	ON	N/A*	2
OFF	ON	ON	4	4
ON	OFF	ON	8	5
OFF	OFF	ON	16	10
ON	ON	OFF	32	25
OFF	ON	OFF	64	50
ON	OFF	OFF	128	100
OFF	OFF	OFF	256	200

* N/A indicates invalid. The rotary switch is forbidden setting as N/A.

1. Please poke the DIP switch correctly as following figure.

When the voltage of the control signal is 24V, then the resistors in the connection figure are $2K\,\Omega$.

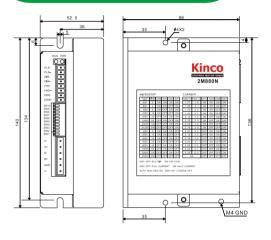
Current Regulation

There is a red 8-bit function setting switch at the top of the driver, which is used to set the working mode and parameters of the driver Please carefully read the reference before use. Do remember to

The front view of the DIP switch is as follows:

The output phase current setting table								
DIP6	DIP7	DIP8	Output Current					
ON	ON	ON	1.2A					
ON	ON	OFF	1.5A					
ON	OFF	ON	1.8A					
ON	OFF	OFF	2.0A					
OFF	ON	ON	2.5A					
OFF	ON	OFF	2.8A					
OFF	OFF	ON	3.0A					
OFF	OFF	OFF	3.5A					

ϵ

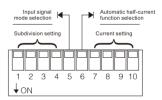


- High performance, multiple functions, simple operation, cost-effective;
- Automatic parameter adjustable regulation, ensures motor run at optimal performance:
- Supporting driver test running function:
- Supporting phase memory function, driver will record phase position of motor during motor stop to ensure motor not shake when re-power;
- With step smooth filter, can smooth input pulse and reduce the transient motion of motor, make sure motor run more smoothly;
- Supporting automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- Automatic internal high-subdivision conversion technology ensures motor run at optimal subdivision state;
- Opto-isolation ERR signal output with max, current of 20mA;
- Opto-isolation signal input, with pulse response frequency up to 400KHz.

Technical Specifications

Input voltage	24 ~ 70V DC			
Voltage for	85V			
overvoltage protection				
Voltage for	15V			
undervoltage protection				
Temperature for	>80°C (temperature of thermistor)			
overheat protection				
Output current	2.4/2.8/3.2/3.6/4.0/4.4/4.8/ 5.2/5.6/6.0/6.4/6.8/7.2/			
(peak,Unit: A)	7.6/8.0,total 15 setting values.			
Micro step	2/4/5/8/10/16/20/25/32/40/50/64/100/128/200/256,			
	total 16 subdivisions.			
Adaptable motor	56 and 86 series two-phase bipolar hybird stepper motor			
Input signal	PLS(CW), DIR(CCW), A/B,FREE; Current range:6~16m			
Output signal	ERR, open collector output, maximum current: 20mA			
Control signal mode	PLS+DIR; CW/CCW, A+B			
Automatic half current	The driver will reduce phase current of the motor			
	by a half in 1.5 seconds			
Operation indication	Combination of Run and Error LED.			
Protection	Over-voltage, under-voltage, short circuit, overheat			
Cooling method	Nature air cooling			
m Operation	Avoid the environment with great amount of metallic			
Environment	powder, oil mist, or erosive gases.			
Operation humidity	<85%, RH (non-condensing or water drops)			
Environment Operation humidity Operation temperature	0℃ ~ +40℃			
Storage temperature	-20℃ ~ +70℃			
Weight (net)	0.71Kg			
Dimensions	140 x 96 x 52.5 mm			
Ingress protection	IP20			

Mechanical Dimensions Unit:



Instructions for rotary switch setting

Function setting:

Input signal mode selection: SW5=OFF: Single pulse input (PLS+DIR); SW5=ON: Double pulse input. (CW/CCW) Automatic half-current: SW6=ON: valid. SW6=OFF: invalid. Test running: SW4=ON, SW2=ON, others are OFF: vlaid. Micro-step smooth filter: SW4=ON, SW1=ON, others are OFF,

after re-power driver, Micro-step smooth filter will start working; SW3=ON, SW1=ON, others are OFF, after re-power, Micro-step smooth filter will stop working

Subd	livision se	tting	SW1=ON	SW1=OFF	Cı	urrent setti	ng	SW10=ON	SW10=OFF
SW2	SW3	SW4	Subdi	vision	SW7	SW8	SW9	Current (Pe	eak, unit:A)
ON	ON	ON	2	5	ON	ON	ON	2.4	5.6
OFF	ON	ON	4	10	OFF	ON	ON	2.8	6.0
ON	OFF	ON	8	20	ON	OFF	ON	3.2	6.4
OFF	OFF	ON	16	25	OFF	OFF	ON	3.6	6.8
ON	ON	OFF	32	40	ON	ON	OFF	4.0	7.2
OFF	ON	OFF	64	50	OFF	ON	OFF	4.4	7.6
ON	OFF	OFF	128	100	ON	OFF	OFF	4.8	8.0
OFF	OFF	OFF	256	200	OFF	OFF	OFF	5.2	NA

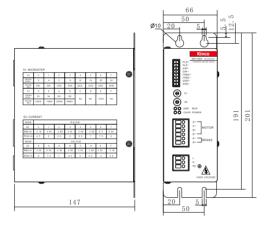
^{*} DIP switch is forbidden to set as N/A, or the driver will be alarm automatically

05

- High performance multiple functions, simple operation, cost-effective:
- Automatic parameter adjustable regulation, ensures motor run at optimal performance;
- Supporting driver test running function;
- Supporting phase memory function, driver will record phase position of motor during motor stop to ensure motor not shake when re-power;
- With step smooth filter, can smooth input pulse and reduce the transient motion of motor, make sure motor
- Supporting automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- · Automatic internal high-subdivision conversion technology ensures motor run at optimal subdivision state;
- Opto-isolation ERR signal output with max. current of 10mA;
- Opto-isolation signal input, with pulse response frequency up to 400KHz.

Technical Specifications

Par	ameter	Value			
Inp	ut voltage	77~123VAC, (50Hz)			
Ove	er-voltage protection	187VDC			
Und	der-voltage protection	90VDC			
Out	tput current	4.5A, 5A, 5.5A, 6A, 6.5A, 7A, 7.5A, 8A, total 8 setting values.			
Mic	ro step	2/ 4/ 5/ 8/ 10/ 16/ 20/ 32/ 50/ 64/ 100/ 128,			
		total 12 subdivisions.			
Ada	aptable motor	56/86/110 series two-phase bipolar hybrid stepper motors			
Inp	ut signal	PLS(CW), DIR(CCW), A/B, FREE; Current range: 6~16mA			
Cor	ntrol signal mode	PLS+DIR, CW/CCW, A+B			
Out	tput signal	ERR, open collector output, maximum current:20mA			
Aut	omatic half current	The driver will reduce phase current of the motor			
		by a half in 1.5 seconds			
Protection		Overvoltage, undervoltage, short circuit and heat protection.			
Dyr	namic braking circuit *	Absorb regenerated energy of motor by connecting to			
		power resistor. Custom function.			
Cod	oling way	Fan cooling			
ш	Operation	Avoid the environment with great amount of metallic			
nvi	Environment	powder, oil mist, or erosive gases.			
Environment	Operation humidity	<85%, RH (non-condensing or water drops)			
mer	Operation temperature	0°C ~ +40°C			
11	Storage temperature	-20℃ ~ +70℃			
We	ight	1.5Kg			
Din	nensions	201 x 147 x 66 mm			
Ing	ress protection	IP20			
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			


* Please confirm with factory for custom of driver with dynamic braking circuit.

Function of Rotary Switch

S1, Micro-step: switch for subdivision and test running function								
S1	0	1	2	3	4	5	6	7
Microstep	2	4	5	8	10	16	20	32
Pulse/rev	400	800	1000	1600	2000	3200	4000	6400
S1	8	9	Α	В	С	D	E	F
Microstep	50	64	100	128	NIA	NIA	TECT	NIA
Pulse/rev	10000	12800	20000	25600	NA	NA	TEST	NA

S2, Cur	rent: s	witch for	r current	t and PL	.S/DIR,	CW/CC	W settin	ıg
Mode				PLS-	+DIR			
S2	0	1	2	3	4	5	6	7
Rms(A)	3.18	3.54	3.89	4.24	4.60	4.95	5.30	5.65
Peak(A)	4.5	5	5.5	6	6.5	7	7.5	8
Mode				CW/	CCW			
S2	8	9	Α	В	С	D	Е	F
Rms(A)	5.65	5.30	4.95	4.60	4.24	3.89	3.54	3.18
Peak(A)	8	7.5	7	6.5	6	5.5	5	4.5

Mechanical Dimensions Uni

Operation Table

Mode	S1	S2	Method
Auto Run	E	0~F	Set S1=E, S2=0-F when driver is powered off, then power on the driver, the motor will run at 60RPM automatically.
PLS+DIR	0~B	0~7	Set S1=0~B, S2=0~7 when driver is powered off, then power on the driver, the motor will run in PLS+DIR mode.
CW/CCW	0~B	8~F	Set S1=0~B, S2=8~F when driver is powered off, then power on the driver, the motor will run in CW/CCW mode.
Half current	F	С	Set S1 and S2 as the "MODE settings
Full current	F	D	(as the left table)" when driver is powered off. Then power on the driver, the 4 LEDs will run as: RUN LED blinks, POWER LED is green, ERR LED is red. CHOP LED is off.
Step smooth filter enable	F	F	It means the mode setting is succeed, then restart the driver, the driver will work in setting mode.
Step smooth	F	Е	

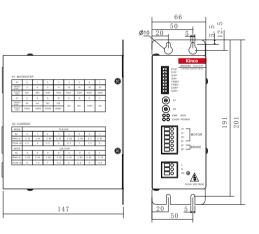
ϵ

- High performance multiple functions, simple operation, cost-effective:
- Automatic parameter adjustable regulation, ensures motor run at optimal performance;
- Supporting driver test running function;
- · Supporting phase memory function, driver will record phase position of motor during motor stop to ensure motor not shake when re-power;
- With step smooth filter, can smooth input pulse and reduce the transient motion of motor, make sure motor
- Supporting automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors;
- Automatic internal high-subdivision conversion technology ensures motor run at optimal subdivision state;
- Opto-isolation ERR signal output with max. current of 10mA;
- Opto-isolation signal input, with pulse response frequency up to 400KHz.

Technical Specifications

Pa	rameter	Value		
Input voltage		220VAC ±15%(50Hz) (187~253VAC)		
Ov	er-voltage protection	395VDC		
Un	der-voltage protection	200VDC		
Ou	tput current	4.5A, 5A, 5.5A, 6A, 6.5A, 7A, 7.5A, 8A		
Mic	cro step	2/ 4/ 5/ 8/ 10/ 16/ 20/ 32/ 50/ 64/ 100/ 128		
Ad	aptable motor	56/86/110 series two-phase bipolar hybrid stepper motors		
Inp	ut signal	PLS(CW), DIR(CCW), A/B, FREE; Current range: 6~16mA		
Со	ntrol signal mode	PLS+DIR, CW/CCW, A+B		
Ou	tput signal	ERR, open collector output, maximum current:20mA		
Au	tomatic half current	The driver will reduce phase current of the motor		
		by a half in 1.5 seconds		
Pro	otection	Overvoltage, undervoltage, short circuit and heat protection.		
Dy	namic braking circuit *	Absorb regenerated energy of motor by connecting		
		to power resistor. Custom function.		
Со	oling way	Fan cooling		
т	Operation	Avoid the environment with great amount of metallic		
	Environment	powder, oil mist, or erosive gases.		
Environment	Operation humidity	<85%, RH (non-condensing or water drops)		
	Operation temperature	0℃ ~ +40℃		
Storage temperature		-20℃ ~ +70℃		
We	eight	1.5Kg		
Dir	nensions	201 x 147 x 66 mm		
Ing	ress protection	IP20		

 $\begin{tabular}{ll} \star Please confirm with factory for custom of driver with dynamic braking circuit. \end{tabular}$


Function of Rotary Switch

S1, Micro-step: switch for subdivision and test running function								
S1	0	1	2	3	4	5	6	7
Microstep	2	4	5	8	10	16	20	32
Pulse/rev	400	800	1000	1600	2000	3200	4000	6400
S1	8	9	Α	В	С	D	E	F
Microstep	50	64	100	128	NIA	NIA	TECT	NIA
Pulse/rev	10000	12800	20000	25600	NA	NA	TEST	NA
S2, Current: switch for current and PLS/DIR, CW/CCW setting								

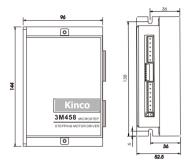
								_
S2, Curi	rent: S	witch for	current	and PL	.S/DIR,	CW/CC	W settin	g
Mode				PLS+	+DIR			
S2	0	1	2	3	4	5	6	7
Rms(A)	3.18	3.54	3.89	4.24	4.60	4.95	5.30	5.65
Peak(A)	4.5	5	5.5	6	6.5	7	7.5	8
Mode				CW/0	CCW			
S2	8	9	Α	В	С	D	Е	F
Rms(A)	5.65	5.30	4.95	4.60	4.24	3.89	3.54	3.18
Peak(A)	8	7.5	7	6.5	6	5.5	5	4.5

* DIP switch is forbidden to set as N/A, or the driver will be alarm automatically.

Mechanical Dimensions un

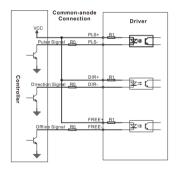
Operation Table

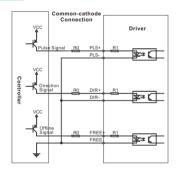
Mode	S1	S2	Method
Auto Run	Е	0~F	Set S1=E, S2=0-F when driver is powered off, then power on the driver, the motor will run at 60RPM automatically.
PLS+DIR	0~B	0~7	Set S1=0~B, S2=0~7 when driver is powered off, then power on the driver, the motor will run in PLS+DIR mode.
CW/CCW	0~B	8~F	Set S1=0~B, S2=8~F when driver is powered off, then power on the driver, the motor will run in CW/CCW mode.
Half current	F	С	Set S1 and S2 as the "MODE settings
Full current	F	D	(as the left table)" when driver is powered off. Then power on the driver, the 4 LEDs will run as: RUN LED blinks, POWER LED is green, ERR LED is red. CHOP LED is off.
Step smooth filter enable	F	F	It means the mode setting is succeed, then restart the driver, the driver will work in setting mode.
Step smooth filter disable	F	E	


* DIP switch is forbidden to set as N/A, or the driver will be alarm automatically.

Kinco 3M880N Stepper Motor Driver (Three-phase)

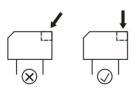
- The maximum supply voltage is 40VDC;
- The constant current drive mode is taken, with maximum drive current up to 5.8A per phase, which can drive any 57 and 85 series three-phase hybird stepper motors
- A dedicated control chip is used. Maximum subdivision is up to 10000step/turn. The subdivision function can be set by the DIP switch, to ensure the best operation stability;
- The driver output phase current of a motor can be regulated through the DIP switch, to match motors of different specifications;
- · Supporting automatic half current function of motors in statically locked status, which can greatly reduce heat dissipation of the motors:
- Supporting offline function so that the output current of a motor can be cut off if necessary


Mechanical Dimensions Unit



Technical Specifications

Supply voltage	24 ~ 40V DC
Output phase current	3.0 ~ 5.8A
Control signal input current	6 ~ 16mA
Protection	Over-voltage, under-voltage, over-current,
	overheat
Cooling method	Natural air cooling
Operating environment	Avoid the environment with a great amount of metallic powder, oil mist, or erosive gases
Operating temperature	-10℃ ~ +45℃
Operating humidity	<85% (non-condensing or water drops)
Weight	0.7Kg


Typical Wring Diagram

Precautions

1. Please poke the DIP switch correctly as following figure.

2. When the voltage of the control signal is 5V, then the resistors in the connection figure are 0Ω .

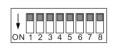
When the voltage of the control signal is 24V, then the resistors in the connection figure are 2K Ω

Functions of DIP Switch

There is a red 8-bit DIP function setting switch in the middle of the connecting terminal at a side of the driver. It can be used to set the working mode and parameters of the driver. Please carefully read the reference before use.

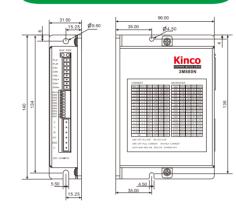
The front view of the DIP switch is as follows:

Serial Number	Function of ON	Function of OFF	Remarks
DIP1~DIP3	Subdivision setting	Subdivision setting	
DIP4	Full current of static current	Half current of static current	
DIP5~DIP8	Output current setting	Output current setting	


	The subdivision setting table						
DIP1	DIP2	DIP3	Subdivision				
ON	ON	ON	400 steps/revolution				
ON	ON	OFF	500 steps/revolution				
ON	OFF	ON	600 steps/revolution				
ON	OFF	OFF	1000 steps/revolution				
OFF	ON	ON	2000 steps/revolution				
OFF	ON	OFF	4000 steps/revolution				
OFF	OFF	ON	5000 steps/revolution				
OFF	OFF	OFF	10000 steps/revolution				

Current Regulation

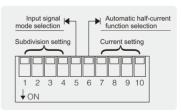
There is a red 8-bit DIP function setting switch in the middle of the connecting terminal at a side of the driver. It can be used to set the working mode and parameters of the driver. Please carefully read the reference before use.


The front view of the DIP switch is as follows:

The output phase current setting table							
DIP5	DIP6	DIP7	DIP8	Output Current			
OFF	OFF	OFF	OFF	3.0A			
OFF	OFF	OFF	ON	4.0A			
OFF	OFF	ON	ON	4.6A			
OFF	ON	ON	ON	5.2A			
ON	ON	ON	ON	5.8A			

- High performance, multiple functions, simple operation, cost-effective:
- Automatic parameter adjustable regulation, ensures motor run at optimal performance;
- Supporting driver test running function;
- Supporting phase memory function, driver will record phase position of motor during motor stop to ensure motor not shake when re-power;
- Automatic half current function
- Step smooth filter function, can smooth input pulse and reduce the transient motion of motor, make sure motor run more smoothly;
- Automatic internal high-subdivision conversion technology ensures motor run at optimal subdivision state;
- Opto-isolation ERR signal output with max. current of 20mA;
- Opto-isolation signal input, with pulse response frequency up to 400KHz.

Mechanical Dimensions Unit:



Rotary Switch Setting

Function setting:

Input signal mode selection: SW5=OFF: Single pulse input (PLS+DIR); SW5=ON: Double pulse input (CW/CCW). Automatic half-current: SW6=ON: valid. SW6=OFF: invalid. Test running: SW4=ON, SW2=ON, others are OFF: invalid.

Micro-step smooth filter: SW4=ON, SW1=ON, others are OFF, after re-power driver, Micro-step smooth filter will start working. SW3=ON, SW1=ON, others are OFF. after re-power, Micro-step smooth filter will stop working.

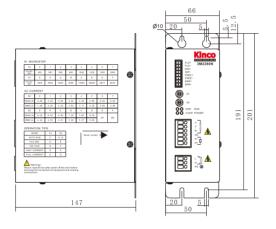
Technical Specifications

Input voltage	24~70VDC		
Over-voltage protection	90V		
Under-voltage protection	15V		
Overheat protection	>80°C (Temperature of thermistor)		
Phase current (Peak)	2.4/2.8/3.2/3.6/4.0/4.4/4.8/5.2/5.6/6.0/6.4/		
	6.8/7.2/7.6/8.0, total 15 setting values (Unit:A)		
Subdivision	400~30000pulse/rev, total 16 subdivisions		
Adaptable motor	57 or 85 series three-phase hybird		
	stepper motor		
Input signal	PLS(CW), DIR(CCW), A/B, FREE,		
	Current range:6~16 mA		
Control signal mode	PLS+DIR, CW/CCW, A+B		
Output signal	ERR, open collector output,		
	maximum current:20mA		
Automatic half current	The driver will reduce phase current of		
	the motor by a half in 1.5 seconds		
Protection	Over-voltage, under-voltage,		
	over-current, overheat		
Cooling method	Natural air cooling		
Operation environment	Avoid the environment with a great amount of		
invir	metallic powder, oil mist, or erosive gases.		
Operation humidity	<85%, RH(non-condensing or water drops)		
Operation humidity Operation temperature	0℃~+40℃		
Storage temperature	-20℃~+70℃		
Weight	0.4Kg		
Dimensions	140×96×31.5mm		
Ingress protection	IP20		

	Subdivision setting (Unit PULSE/REV)					Curr	ent settin	g (Peak, Unit: A	4)
SW1	SW2	SW3	SW4=ON	SW4=OFF	SW7	SW8	SW9	SW10=ON	SW10=OFF
ON	ON	ON	400	4000	ON	ON	ON	2.4	5.6
OFF	ON	ON	500	5000	OFF	ON	ON	2.8	6
ON	OFF	ON	600	6000	ON	OFF	ON	3.2	6.4
OFF	OFF	ON	800	10000	OFF	OFF	ON	3.6	6.8
ON	ON	OFF	1000	12800	ON	ON	OFF	4	7.2
OFF	ON	OFF	1200	20000	OFF	ON	OFF	4.4	7.6
ON	OFF	OFF	2000	25600	ON	OFF	OFF	4.8	8
OFF	OFF	OFF	3000	30000	OFF	OFF	OFF	5.2	NA

Kinco FM860 Field bus Stepper Driver (Two-phase / Three-phase)

- · High performance, diverse functions, simple operation, cost-effective;
- Automatic parameter adjustable regulation;
- Driver test running function;
- Phase memory function;
- PLS+DIR and CW/CCW control signal available;
- Opto-isolation ERR signal output;
- The driver will reduce the phase current of the motor by a half in 1.5 seconds;
- Opto-isolation signal input, with pulse response frequency up to 400 KHz;
- 14 micro-step value, the maximum micro-step value is 20000 pulse/rev. The maximum output phase current is 8A(Peak);
- With the protection function of over-voltage, under-voltage, over-current, overheat and phase dislocation;
- With step smooth filter, can smooth the input pulse, reduce the transient motion of motor, make the motor runs more smoothly.


Technical Specifications

Input voltage		220V AC±15% (50Hz)(187~253VAC)		
Ov	er-voltage protection	395VDC		
Under-voltage protection		200VDC		
Ph	ase current	2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6, 6.4, 6.8,		
(pe	eak, unit: A)	7.2, 7.6 8.0, total 14 setting values.		
Mic	cro step	400, 500, 600, 800, 1000, 1200, 1500, 2000, 3000,		
(uı	nit: pulse/rev)	4000, 5000, 6000, 10000, 20000, total 14 subdivisions.		
Ada	aptable motor	110 and 130 series three-phase hybird stepper motor		
Inp	ut signal	Three control signal ports: PLS(CW)/DIR(CCW)/FREE;		
		current range: 6 ~16mA		
Coı	ntrol signal input method	PLS+DIR; CW/CCW, A+B		
Ou	tput signal	ERR, open collector output, max current: 10mA		
Aut	omatic half-current	The driver will reduce the phase current of the motor		
		by a half in 1.5 seconds		
Pro	tection	Over-voltage, under-voltage, short circuit, and overheat protection		
Dyı	namic braking circuit*	Absorb regenerated energy of motor by connecting		
		to power resistor. Custom function.		
Со	oling method	Forced air cooling		
Ш	Operation	Avoid the environment with great amount of metallic		
Environment	environment	powder, oil mist, or erosive gases.		
Operation humidity		<85%, RH (non-condensing or water drops)		
Operation temperature		0°C ~ +40°C		
Storage temperature		-20℃ ~ +70℃		
We	ight (net)	1.5Kg		
Din	nensions	201 x 147 x 66 mm		
Ing	ress protection	IP20		

S1	0	1	2	3	4	5	6	7
Pulse/rev	400	500	600	800	1000	1200	1500	2000
S1	8	9	Α	В	С	D	E	F
Pulse/rev	3000	4000	5000	6000	10000	20000	SET1	SET2
S2, Curre	nt: swit	ch for c	urrent a	and PL	S/DIR, (CW/CC	W setti	ng
Mode	PLS+I	DIR						
S2	0	1	2	3	4	5	6	7
Peak(A)	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60
Rms(A)	1.98	2.26	2.55	2.83	3.11	3.39	3.68	3.96
Mode	CW/C	CW						
S2	8	9	Α	В	С	D	Е	F
Peak(A)	6.00	6.40	6.80	7.20	7.60	8.00		
Rms(A)	4.24	4.53	4.81	5.09	5.37	5.66	M1	M2

S1, Micro-step: switch for subdivision and test running function

Mechanical Dimensions Unit:n

Operation Table

Mode	S1	S2	Method
Auto Run	F	0~D	Set the s1&s2 as S1=F,S2=0~D when driver is power off, then power on the driver, the motor will run automatically.
PLS+DIR	Е	Е	
CW/CCW	Е	F	Set S1 and S2 as the "MODE settings (as the left table)" when driver is power off, then power on
HALF CURRENT	Е	С	the driver, the 4 standards LED will run as:, this means the mode setting is success, then reboot the driver, the driver will work in setting mode.
FULL CURRENT	E	D	
Step smooth filter enable	F	F	Enable smoothing acceleration/ deceleration function.
Step smooth filter disable	F	Е	Enable immediately response mode.

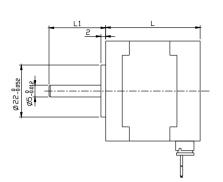
ϵ

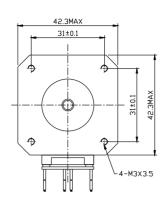
- 6 opto-isolation digital input channels, 3 channels support voltage range 5~24VDC;
- 3 opto-isolation digital signal output channels, max current 100mA;
- 1 analog signal input channel(±10V) speed control;
- Support PLS+DIR, CW/CCW and A+B signal;
- Opto-isolation CAN and RS485 interfaces;
- Support CANopen and Modbus protocol;
- Multiple I/O functions, support homing, multi-speed;
- Support automatic parameter adjustable regulation, self-defined shalf-loack, step smooth filter;
- Over-voltage, under-voltage, overheat and over-current protection;
- Support RS232 communication, parameter settings by KincoStep software;
- CF and RoHS

Mechanical Dimensions Unit:mn

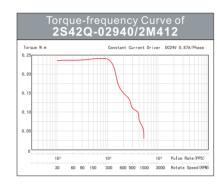
Technical Specifications

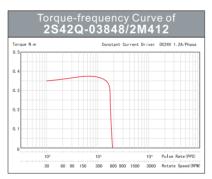
Input voltage	24 ~ 70VDC
Over-voltage protection	90V
Under-voltage protection	15V
Phase current (Peak)	0 ~ 6A
Subdivision	Set by "KincoStep" software
Adaptable motor	56/86 series two-phase or 57/85 series
	three-phase hybrid stepper motor
Control signal mode	PLS+DIR, CW/CCW, A+B
Cooling method	Natural air cooling
Operation environment	Avoid the environment with a great amount of
	metallic powder, oil mist, or erosive gases.
Operation humidity	<85%, RH(non-condensing or water drops)
Operation temperature	0℃ ~ +40℃
Storage temperature	-20℃~ +70℃
Weight	0.36Kg
Dimensions	134.5x 75.5 x 34mm
Ingress protection	IP20

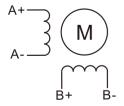

Note: The communication able is suggested to purchased with the first order. Model: Console configuration cable (conversion cable RS232-to-RJ45)


Introduction of Interface

interface	Symbol		Function		
	SW7~SW8 Switches for setting 2-wire or 4-wire RS485		Switches for communication interface setting		
X1	SW9~SW10	Switches for terminal resistor setting			
Field Bus)		X1A(IN)X1B(OUT)	CAN bus or RS485 interface		
ID DIP		SW1~SW6	ID rotary switch		
X2		RS232	RS232 interface		
	DIN1+	DIN1 positive			
	DIN1-	DIN1 negative	High speed digital signal input interface		
	DIN2+	DIN2 positive	Input voltage: 3.3~24VDC Valid input signal: >2.5VDC and >4mA		
	DIN2-	DIN2 negative	Invalid input signal: <1.5VDC and >4mA		
	DIN3+	DIN3 positive	Maximum input frequency of optocoupler: 1MHz		
	DIN3-	DIN3 negative			
	DIN4	DIN4 input	Low speed digital signal input interface		
	DIN5	DIN5 input	Scope of input voltage: 12~24VDC Valid input signal: >8VDC and >3mA		
	DIN6	DIN6 input	Invalid input signal: <5VDC		
Х3	COMI	Common port of DIN4, DIN5, DIN6	Max. input frequency of optocoupler: 10kHz		
(IO)	AIN1+	AIN1 differential signal positive	The analog signal input interface		
	AIN1-	AIN1 differential signal negative	The input impedance: 180K Max. input frequency: 4kHz		
	GND	Common port of AIN1 and logic power supply	Max. withstand voltage: 24VDC		
	5VDC	5VDC Logic power output	The maximum output current: 200mA		
	24VDC	24VDC Logic power input	Auxiliary logic power supply when external power supply does not work		
	OUT1	OUT1 output			
	OUT2	OUT2 output	Max. output current: 100mA		
	СОМО	Common port of OUT1 and OUT2	Max. withstand voltage: 24VDC		
	OUT3+	OUT3 positive	Max. output frequency of optocoupler: 1kHz		
	OUT3-	OUT3 negative			

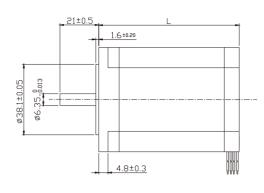

11

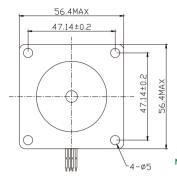

Kinco Two-phase Stepper Motor /56 Series



Technical Specifications	2S42Q-03848	2S42Q-02940			
Step angle	1.8° ±5%	1.8° ±5%			
Phase current (A)	1.2	0.87			
Holding torque (Nm)	0.32	0.24			
Damping torque (Nm)	0.02	0.015			
Winding resistance (Ω)	$3.2\!\pm\!10\%$	$3.3 \pm 10\%$			
Winding inductance (mH)	$6.0 \pm 20\%$	$5.0 \pm 20\%$			
Motor inertia (kg.cm²)	0.08	0.06			
Motor length L (mm)	48	40			
Motor length L1 (mm)	24 ± 0.5	22 ± 0.5			
Number of lead wires	4	4			
Insulation class	E	3			
Withstand voltage level	300V AC	1S 5mA			
Max. axial load (N)	1	0			
Max. radial load (N)	2	1			
Operating temperature	-20 ℃	~ 50℃			
Surface temperature rise	Max.80°C (rated phase current a	ifter single-phases are connected)			
Insulation impedance	Minimum 100M Ω , 500V DC				
Weight (kg)	0.34	0.24			
Lead wire length (mm)	400±5	500±3			
Startup freq. with no load(Hz)*	11.4K	12.4K			

Motor Cable


Wire Color	Motor Signal
Brown	A+
Orange	A-
Grey	B+
Green	B-


Wire Color	Motor Signal
Red	A+
Yellow	A-
Orange	B+
Brown	B-

Four lead wires of Two-phase Motor

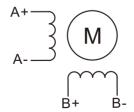
2S42Q-02940

2S42Q-03848

0.42

9.8K

Note: Where, the shaft diameter of 2S56Q-030B5 is 8mm.

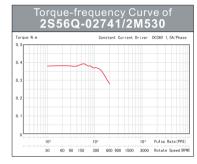

Technical Specifications	2S56Q-030B5	2S56Q-02976	2S56Q-02054	2S56Q-02741		
Step angle	1.8° ±5%	1.8° $\pm 5\%$	$1.8^{\circ} \pm 5\%$	$1.8^{\circ} \pm 5\%$		
Phase current (A)	6.0	3.0	3.0	1.5		
Holding torque (Nm)	2.5	1.5	0.9	0.5		
Damping torque (Nm)	0.12	0.07	0.04	0.02		
Winding resistance (Ω)	0.5±10%	$0.95\!\pm\!15\%$	$0.65\!\pm\!15\%$	$1.8 \pm 10\%$		
Winding inductance (mH)	1.8±20%	$3.4 \pm 20\%$	$2.5\!\pm\!20\%$	$4.1 \pm 20\%$		
Motor inertia (kg.cm²)	0.75	0.46	0.26	0.14		
Motor length L (mm)	111	76	54	41		
Number of lead wires	4					
Insulation class	В					
Withstand voltage level		600V AC	1S 5mA			
Max. axial load (N)		1	5			
Max. radial load (N)		75				
Operating temperature		-20℃	~ 50℃			
Surface temperature rise	Max.80°C (ra	ted phase current a	after single-phases	are connected)		
Insulation impedance		Minimum 100	MΩ, 500V DC			

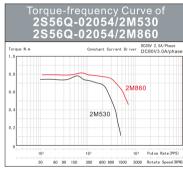

±1			
*1 Note: The startup fr	eq. is tested on co	ndition of 2000step/turi	n, only for reference.

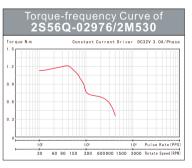
1.5

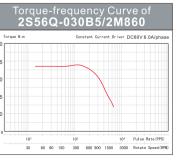
 $300\!\pm\!10$

Motor Cable

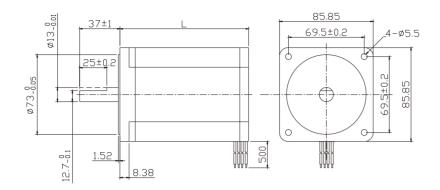



1.0


0.6 300±10 *²


8.9K

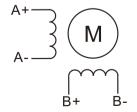
Four lead wires of Two-phase Motor



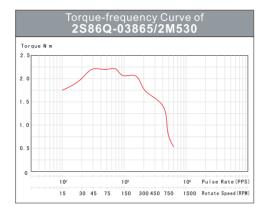
lacksquare

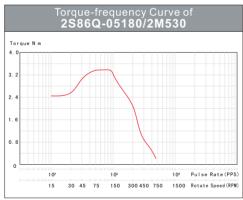
^{*}Note: The startup freq. is tested on condition of 2000step/turn, only for reference.

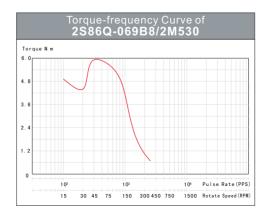
 $^{^{*2}}$ The outlet wire of 2S56Q-02741 is in plug-in form.

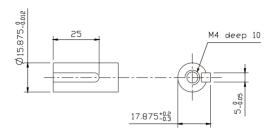

Kinco Two-phase Stepper Motor /86 Series

Technical Specifications	2S86Q-069B8	2S86Q-05180	2S86Q-03865		
Step angle	1.8° ±5%	1.8° ±5%	1.8° ±5%		
Phase current (A)	3.0	3.0	3.0		
Holding torque (Nm)	8.5	4.5	3.4		
Damping torque (Nm)	0.24	0.12	0.08		
Winding resistance (Ω)	$2.3 \pm 10\%$	$1.7 \pm 10\%$	$1.25 \pm 10\%$		
Winding inductance (mH)	26±20%	$16\!\pm\!20\%$	$7.0 \pm 20\%$		
Motor inertia (kg.cm²)	3.4	1.4	1.0		
Motor length L (mm)	118	80	65		
Number of lead wires	4				
Insulation class	В				
Withstand voltage level	1200V AC 1S 5mA				
Max. axial load (N)	60				
Max. radial load (N)		220			
Operating temperature		-20℃ ~ 50℃			
Surface temperature rise	Max.80°C (rated ph	ase current after single-	phases are connected)		
Insulation impedance	Minin	num 100M Ω , 500	V DC		
Weight (kg)	3.7	2.3	1.7		
Startup freq. with no load(Hz)*	4K	7K	11.1K		


^{*} Note: The startup freq. is tested on condition of 2000step/turn, only for reference.


Motor Cable



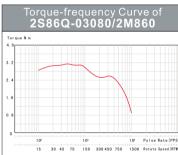

Wire Color	Motor Signal
Black	A+
Green	A-
Red	B+
Blue	B-

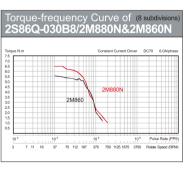
Four lead wires of Two-phase Motor


Note: Where, the shaft diameter of 2S86Q-051F6 is 15.875mm, and key is a 5x5x25mm flat key.

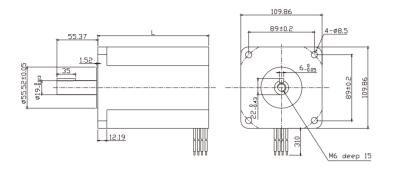
2S86Q-051F6	2S86Q-030B8	2S86Q-03080	2S86Q-01865	
1.8° ±5%	1.8° ±5%	1.8° ±5%	1.8° ±5%	
6.0	6.0	6.0	6.0	
12.8	8.5	4.5	3.1	
0.36	0.24	0.12	0.08	
0.85±10%	$0.6 \!\pm\! 10\%$	$0.38\!\pm\!10\%$	$0.3 \pm 10\%$	
10±20%	$6\pm20\%$	$3.5\!\pm\!20\%$	$1.7 \pm 20\%$	
4.0	3.4	1.4	1.0	
156	118	80	65	
4				
В				
1200V AC 1S 5mA				
60				
220				
-20℃ ~ 50℃				
Max.80℃ (rated phase current after single-phases are connected)				
	Minimum 100I	M Ω , 500V DC		
5.3	3.7	2.3	1.7	
5.8K	10K	9.1K	10K	
	1.8° ±5% 6.0 12.8 0.36 0.85±10% 10±20% 4.0 156	1.8° ±5% 1.8° ±5% 6.0 6.0 12.8 8.5 0.36 0.24 0.85±10% 0.6±10% 10±20% 6±20% 4.0 3.4 156 118 1200V AC 6 22 -20°C € Max.80°C (rated phase current at Minimum 1000) 5.3 3.7	6.0 6.0 6.0 12.8 8.5 4.5 0.36 0.24 0.12 0.85±10% 0.6±10% 0.38±10% 10±20% 6±20% 3.5±20% 4.0 3.4 1.4 156 118 80 4 B 1200V AC 1S 5mA 60 220 -20°C ~ 50°C Max.80°C (rated phase current after single-phases Minimum 100M Ω, 500V DC 5.3 3.7 2.3	

Black


Blue

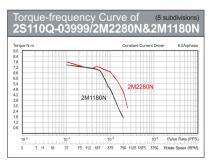

Motor Cable

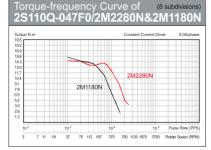
2.0			П	\rightarrow					
1.5									
1.0						_/			
0.5									
			Ш			Ш		Ш	
	102			103			104	Pulse	Rate (PP
	15	30 45	75	150	300 450			Rotate	Speed (RP

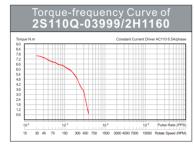


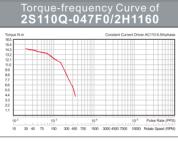
lacksquare

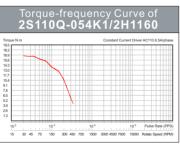
^{*} Note: The startup freq. is tested on condition of 2000step/turn, only for reference.

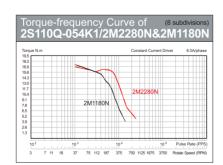

Kinco Two-phase Stepper Motor /130 Series

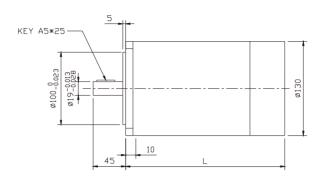


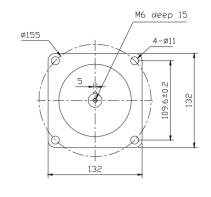

Motor C	able	
		_
Wire Color	Motor Signal	A+ \
Black	A+	₹ (M <i>)</i>
Green	A-	A
Red	B+	
Blue	B-	B+ B-


Technical Specifications	2S110Q-054K1	2S110Q-047F0	2S110Q-03999	
Step angle	1.8° ±5%	1.8° ±5%	1.8° ±5%	
Phase current (A)	8.0	6.5	5.5	
Holding torque (Nm)	30.0	21.0	11.7	
Damping torque (Nm)	0.75	0.59	0.3	
Winding resistance (Ω)	0.67±10%	$0.72 \pm 10\%$	$0.7 \pm 10\%$	
Winding inductance (mH)	11±20%	$12.8 \pm 20\%$	$9.8\!\pm\!20\%$	
Motor inertia (kg.cm²)	16.2	10.9	5.5	
Motor length L (mm)	201	150	99	
Number of lead wires	4			
Insulation class	В			
Withstand voltage level	1200V AC 1S 5mA			
Max. axial load (N)	60			
Max. radial load (N)		220		
Operating temperature		-20℃ ~ 50℃		
Surface temperature rise	Max.80°C (rated ph	ase current after single-	phases are connected)	
Insulation impedance	Minin	num $100M\Omega$, 500	V DC	
Weight (kg)	11.7	8.4	5.0	
Startup freq. with no load(Hz)*	4.8K	4.5K	5.2K	

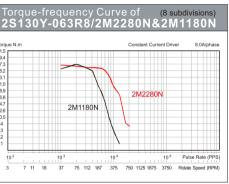


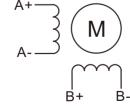






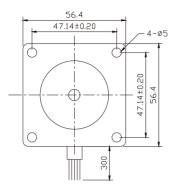






Technical Specifications	2S130Y-063R8	2S130Y-039M0		
Step angle	1.8° ±5%	1.8° ±5%		
Phase current (A)	7.0	6.0		
Holding torque (Nm)	40.0 27.0			
Damping torque (Nm)	1.5 0.8			
Winding resistance (Ω)	0.9±10%	$0.65 \pm 10\%$		
Winding inductance (mH)	9.5±20%	$13.8 \pm 20\%$		
Motor inertia (kg.cm²)	48.4	33.3		
Motor length L (mm)	230	165		
Number of lead wires	4			
Insulation class	В			
Withstand voltage level	1800V AC 1S 5mA			
Max. axial load (N)	60			
Max. radial load (N)	22	20		
Operating temperature	-20℃	~ 50℃		
Surface temperature rise	Max.80°C (rated phase current	after single-phases are connected)		
Insulation impedance	Minimum 100	MΩ, 500V DC		
Weight (kg)	19.0	13.0		
Startup freq. with no load(Hz)*	4.1K	4.9K		

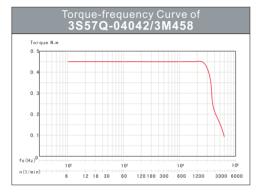
Motor Cable

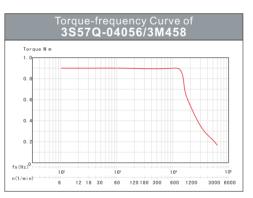

Pin	Motor Signal
1	A+
2	A-
3	B+
4	B-
5	GND

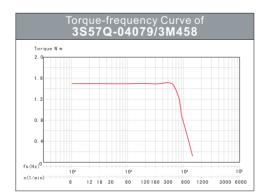
Four lead wires of Two-phase Motor

Pinout of motor connector

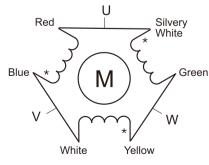
^{*} Note: The startup freq. is tested on condition of 2000step/turn, only for reference.

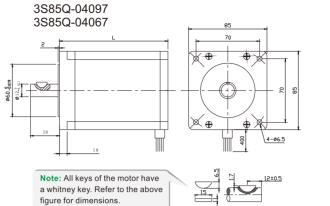

Kinco Three-phase Stepper Motor /85 Series




Note: Where the shaft diameter of 3S57Q-04079 is 8mm.

Technical Specifications	3S57Q-04079	3S57Q-04056	3S57Q-04042			
Step angle	1.2° ±5%	1.2° ±5%	1.2° ±5%			
Phase current (A)	5.8	5.6	5.2			
Holding torque (Nm)	1.5 0.9 0.45					
Damping torque (Nm)	0.07	0.04	0.02			
Phase resistance (Ω)	1.05±10%	$0.7 \pm 10\%$	$1.3 \pm 10\%$			
Phase inductance (mH)	2.4±20%	$1.7 \pm 20\%$	$1.4 \pm 20\%$			
Motor inertia (kg.cm²)	0.48	0.3	0.11			
Motor length L (mm)	79	56	42			
Number of lead wires	6					
Insulation class	В					
Withstand voltage level	600V AC 1S 5mA					
Max. axial load (N)	15					
Max. radial load (N)	75					
Operating temperature	-20℃ ~ 50℃					
Surface temperature rise	Max.80 °C (Working with rated phase current)					
Insulation impedance	Minimum 100M Ω , 500V DC					
Weight (kg)	1	0.72	0.45			
Startup freq. with no load(Hz)*	2.1K	2.4K	2.4K			

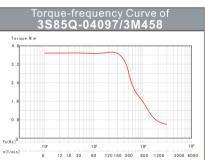


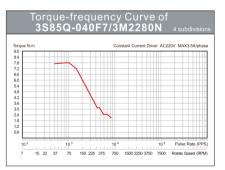

Motor Cable

Red	U
Silvery White	O
Blue	V
White	V
Yellow	W
Green	V V

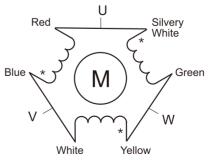
Six lead wires of three-phase motor

3S85Q-040F7

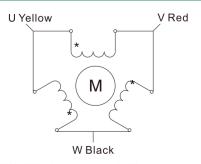



	<u>4−ø5.5</u>
M5×10 1.600.2 30.5±1	8.5 157±1

Technical Specifications	3S85Q-04097	3S85Q-04067	3S85Q-040F7			
Step angle	1.2° ±5%	1.2° ±5%	1.2° ±5%			
Phase current (A)	5.8	5.8	4			
Holding torque (Nm)	4.0	2.0	7.5			
Damping torque (Nm)	0.12	0.08	0.36			
Phase resistance (Ω)	1.1±10%	$0.6 \pm 10\%$	1.78			
Phase inductance (mH)	4.6±20%	$1.8 \pm 20\%$	17.1			
Motor inertia (kg.cm²)	2.32	1.1	0.44			
Motor length L (mm)	97	67	157±1			
Shalf diameter (mm)	12	12	14			
Number of lead wires	6					
Insulation class	В					
Withstand voltage level	600V AC 1S 5mA					
Max. axial load (N)	60					
Max. radial load (N)	220					
Operating temperature	-20℃ ~ 50℃					
Surface temperature rise	Max.80 °C (Working with rated phase current)					
Insulation impedance	Minimum 100M Ω , 500V DC					
Weight (kg)	2.7	1.65	1.65			
Startup freq. with no load(Hz)*	1.4K	1.4K	2.0K			


^{*} Note: The startup freq. is tested on condition of 2000step/turn, only for reference.

10¹ 10² 10³ 10⁴ 10⁶ 6 12 18 30 60 120180 300 600 1200 3000 6000



Motor Cable: 3S85Q-04097 / 3S85Q-04067

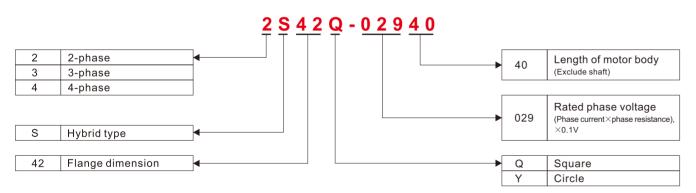
Red	U
Silvery White	J
Blue	V
White	V
Yellow	W
Green	VV

Motor Cable: 3S85Q-040F7

- 1332 18# leading wire, wire length:400 1430 20# green-yellow grounding wire, wire length:400

Six lead wires of three-phase motor

Denomination Rules of Stepper Driver

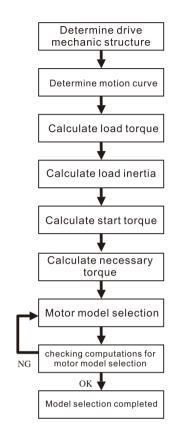

Guide to stepper driver selection

Stepper motor needs to be driven by stepper driver, which is one of the key parts of stepper system. Stepper driver control the coil current of the stepper motor by sending pulse/direction signal, to realize accurate control of motor position and speed.

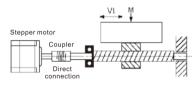
Working mode of stepper driver

Generally, there are following working modes: whole/full step, half step, subdivision(macro-step). The main difference is in control accuracy of motor coil. Usually, stepper motors vibrate at low frequency. Subdivision setting could improve stability of motor running at low speed.

Denomination Rules of Stepper Motor



Guide to stepper motor selection


Stepper motor is specialized for positioning and accurate speed control. The main features are "digital" and "error non-accumulative". Stepper motor will turn a fixed angle for each pulse signal sent by stepper driver, so we could control angular displacement through setting number of pulses to realize accurate positioning, meanwhile control motor speed and acceleration through setting pulse frequency. The "error non-accumulative" feature of stepper motor is widely used in open-loop control.

Motion Mode		Detetional Maties	Linear Motion				
		Rotational Motion	Horizontal axial direction	Vertical axial direction			
Mechanical structure		NR NR Stepper Motor	LEAD: PB Stepper Motor	SERVOMOTOR OF SE			
		N JDrive speed (r/min) V JLoad speed (m/min) T JLoad torque (N/m) JFriction coefficient PB JScrew lead (m)	M JQuality of linear motion p Mc JWeight quality (kg) 1/RJGear reduction ratio JFriction coefficient	art (kg)			
Speed cui	rve	i	SPEED to to	TIME(S)			
Single travel(m) $I = \frac{VI}{60} (t_0 - t_1)$							
Drive speed(rpm)		NI	$Nl = \frac{Vl}{P_B}$	$Nl = \frac{Vl}{P_B}$			
Rotational speed of motor(rpm)		$N_M = NI \cdot R$					
Load torq	ue(N.m)	$T_L = \frac{Tl}{R \cdot \eta}$	$T_L = \frac{\mu \cdot g \cdot M \cdot P_B}{2\pi \cdot R \cdot \eta}$	$T_L = \frac{g \cdot (M - M_C) \cdot P_B}{2\pi \cdot R \cdot \eta}$			
Load Iner	tia		$J_L = J_{L1} + J_{L2} + J_{L3}$				
	Linear motion		$J_{L1} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$	$J_{L1} = \left(M + M_C\right) \cdot \left(\frac{P_B}{2\pi R}\right)^2$			
		Solid cylinder $J_K = \frac{\pi}{32} \rho \cdot L \cdot L$	Solid Cylinder:	density: iron $\rho = 7.9 \times 10^3 \left(kg / m^3 \right)$			
			D (m)	Aluminum: $\rho = 2.7 \times 10^3 \left(kg / m^3 \right)$			
	Rotational motion	Hollow cylinder: $J_K = \frac{\pi}{32} \rho \cdot L \cdot ($	$\left(D_0^4 - D_1^4\right)$ · Hollow Cylinder:	Brass: $\rho = 8.5 \times 10^3 \left(kg / m^3 \right)$			
		Nylon: $\rho = 1.1 \times 10^3 \left(\frac{kg}{m^3} \right)$					
		Inertia loaded to motor shaft gear input: $J_{L2} = J_K$ Gear output: $J_{L3} = \frac{J_K}{R^2}$					
Start torqu	ue(N.m)	$T_S = \frac{2\pi \cdot N_M \left(J_M - \frac{1}{100} \right)}{60 \times t_1}$	$+J_L$) J _M indicates the inertia of the mo	tor rotator (Unit: kg.m²)			
Necessary torque(N.m)		$T_{M} = (T_{L} + T_{S}) \times$	S indicates the safety coefficient	t, normally 2 ~ 3.			

Model Selection Procedure

Example for Model Selection

Speed: VI = 1.5m/min

Quality of slide part: M= 50 kg

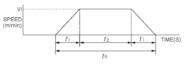
Screw length: $L_B = 1.4 \text{ m}$

Screw diameter: $D_B = 0.012m$

Screw lead: P_B = 0.004m

Coupler quality: $M_c = 0.2 \text{ kg}$

Outer diameter of coupler Dc=0.04m


Friction coefficient: $\mu = 0.3$

Movement distance: I = 0.00275n

Motion time: t₀=1.2s

Mechanical efficiency: $\eta = 0.9$

(1) Speed curve

Acceleration time $t_1=t_0-\frac{l}{Vl}=1.2-\frac{0.0275}{1.5+60}=0.1(s)$

(2) rotation speed of motor

$$N_{\rm M} = \frac{Vl}{P_{\scriptscriptstyle B}} = \frac{1.5}{0.004} = 375 ({\rm rpm})$$

(3) Load torque

$$T_{L} = \frac{\mu \cdot g \cdot M \cdot P_{_{B}}}{2\pi\eta} = \frac{0.3 \times 9.8 \times 50 \times 0.004}{2\pi \times 0.9} = 0.104(N \cdot m)$$

(4) Load inertia

Linear motion: $J_{LM}=M\left(\frac{P_g}{2\pi}\right)^2=50\times\left(\frac{0.004}{2\pi}\right)^2=0.2\times10^{-4}~(kg\cdot m^2)$

Ball screw: $J_{B} = \frac{\pi}{32} \rho \cdot L_{B} \cdot D_{B}^{4} = \frac{\pi}{32} \times 7.87 \times 10^{3} \times 1.4 \times (0.012)^{4} = 0.224 \times 10^{-4} (kg \cdot m^{2})$

Coupler: $J_C = \frac{1}{8} M_C \cdot D_C^2 = \frac{1}{8} \times 0.2 \times (0.04)^2 = 0.4 \times 10^{-4} (kg \cdot m^2)$

Load inertia: $J_{L}=J_{LM}+J_{B+}J_{C}=0.824\times10^{-4} (kg \cdot m^2)$

(5) Motor torque

Start torque $Ts = \frac{2\pi N_M \left(J_M + J_L\right)}{60t} = \frac{2\pi \times 375 \times \left(J_M + 0.824 \times 10^{-4}\right)}{60 \times 0.1} = 0.032 + 392.5 J_M \text{ (N • m)}$

Necessary torque: $T_M = (T_L + T_S) \times S = (T_L + T_S) \times 2 = 0.272 + 0.08 \times 10^4 J_M (N \cdot m)$

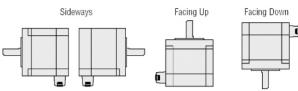
S indicates the safety coefficient, normally 2.

J_M indicates the inertia of the motor rotator (Unit: kg.m²)

(6) Motor selection

Based on the above calculation, preliminarily this motor model is selected, i.e., 2S56Q-02741. rotator

Inertia $J_M = 0.135 \times 10^{-4} \ kg \cdot m^2$ $T_M = 0.272 + 0.08 \times 10^4 \times 0.135 \times 10^{-4} = 0.283 (N \cdot m)$

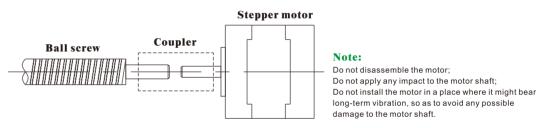


Refer to the torque-frequency curve of 2S56Q-02741. The output torque of the motor meets the requirements, so this motor is selected.

Installation Direction

There is no limitation for the installation direction of motors, but normally motors are horizontally installed. They also support vertical downward or upward installation.

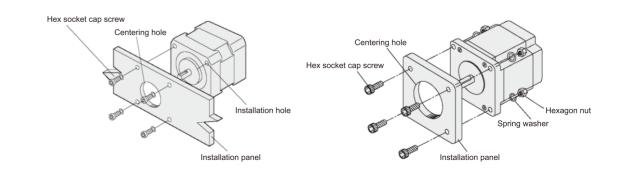
Regardless of the installation direction of motors, please do not apply excessive vertical or horizontal load to the shaft of a motor.


Installation

Please install the motor closely on a metallic surface with perfect heat conductivity.

Recommended Motor Installation Position

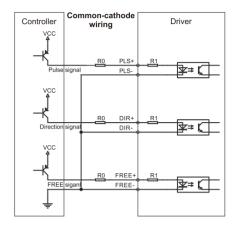
Motors shall be installed in positions meeting the following conditions:


- 1 Indoor
- 2. The temperature inside the control cabinet shall range from -10° C ~ +50° C (non-freezing);
- 3. The humidity inside the control cabinet shall be less than 85% (non-condensing);
- 4. Free from erosive gases or dust;
- 5. Free from water or oil (if available, please install a sheath);
- 6.Perfect ventilation and heat dissipation.

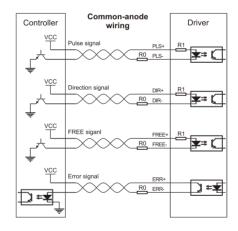
Aligned Connection of Load

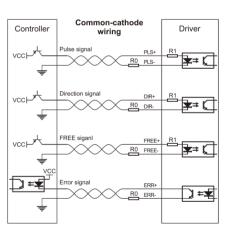
When a load is connected to the motor shaft, make sure that the load shaft aligns with the motor shaft. It is recommended that an anti-backlash flexible coupler or other appropriate devices are used to meet this requirement.


Mechanical processing is forbidden for the motor shaft. Please contact your supplier if it is really necessary.



Driver Motor	2M412	2M420	2M530	2M880N	2M1180N	2M2280N	3M458	3M880N	3M2280N	FM860
2S42Q-02940	√	√								√
2S42Q-03848	√ √	√ √								√ ×
2S56Q-02741	7	· /	√							1
2S56Q-02054		·	√	√						√
2S56Q-02976			√	1						√
2S56Q-030B5				1	√					√
2S86Q-01865				1	√					√
2S86Q-03080				1	√					√
2S86Q-030B8				√	√					√
2S86Q-051F6				√	√					√
2S86Q-03865			√	√	√					√
2S86Q-05180			√	√	√					√
2S86Q-069B8			√	√	√					√
2S110Q-03999					√	√				
2S110Q-047F0					√	√				
2S110Q-054K1					√	√				
2S130Y-039M0					✓	√				
2S130Y-063R8					✓	√				
3S57Q-04042							\checkmark	√		\checkmark
3S57Q-04056							√	√		√
3S57Q-04079							√	√		\checkmark
3S85Q-04067							√	√		√
3S85Q-04097							\checkmark	\checkmark		\checkmark
3S85Q-040F7									\checkmark	


Note: Red marked driver can drive the corresponding motor, but not recommended; 3M2280N can drive the third-party motors.


1. General Connection Mode of Control Signal

2. Twisted-pair Connection Mode of Control Signal

Note: 1. For 2H1160, 3M880N, FM860, there is no need to connect 2K ohm resistor in the wiring, R0=0; 2. For 2M412, 2M420, 2M530, 2M860, 2M880N, 2M1180N, 2M2280N, 3M485, 3M2280N, 2K ohm resistor is required to be connected serially, R0=2K ohm.