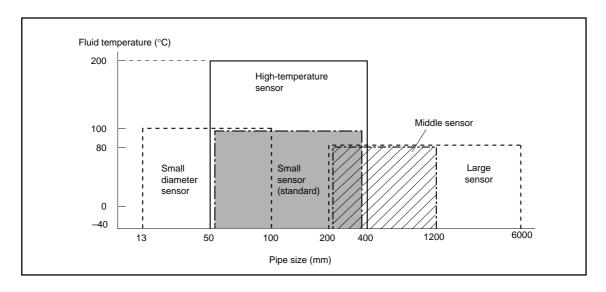


Portable Ultrasonic Flowmeter

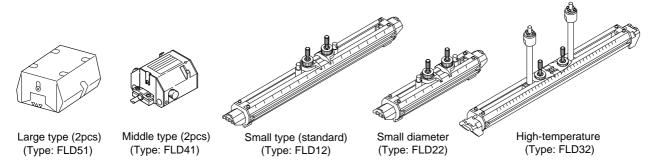
PORTAFLOWX

Quick Reference

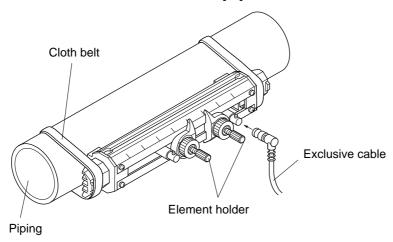

CONTENTS

1.		STANDARD SELECTION OF DETECTOR	2
2.		CONDITIONS OF DETECTOR MOUNTING POSITIONS	3
3.		MEASURABLE FLUID	5
4.		PIPING CONDITIONS	6
5.		MOUNTING METHOD OF DETECTOR ON PIPING	7
6.		OPERATION	8
	6.1	Power ON - How to Select the Language	11
	6.2	Preparation Prior to Measurement (Zero Adjustment, etc.)	
	6.3	Piping Specification Input Method through Determination of Size for Sensor Spacing	
	6.4	Error Status Display and Corrective Actions	
	6.5	Measurement of Fluid with Unknown Sonic Speed	
7.		Q & A	20
	7.1	How is piping setting made when piping specifications are unknown?	20
	7.2	What is the effect of coating outside the piping ?	
	7.3	What is the effect of scales in the piping?	20
	7.4	What is homogenious fluid through which ultrasonic waves are transmitted?	20
	7.5	Is it possible to measure the flow in piping that is not full?	21
	7.6	What happens when the liquid contains air bubbles?	21
	7.7	What about mounting the sensor on horizontal piping?	22
	7.8	What about mounting the sensor on vertical piping ?	22
	7.9	When the length of straight piping is short and a pump, valve, orifice, etc. is present,	00
	7 10	what is required for measurement?	
	7.10 7.11	What is the approximate accuracy of measurement?	
	7.11 7.12	What about error factors ?	
	7.12 7.13	What about comparison with other flowmeters ?	
	7.14	What is the difference between a Doppler type flowmeter and PORTAFLOW X?	
	7.15	Life span of LCD	
8.		DATA	27
	(1)	Sonic Speed of Solid (at 25°C)	
	(2)	Sonic Speed of Water	
	(2)	Sonic Speed of Fluid	2r 28

Note) This manual provides information about the converter type 2.

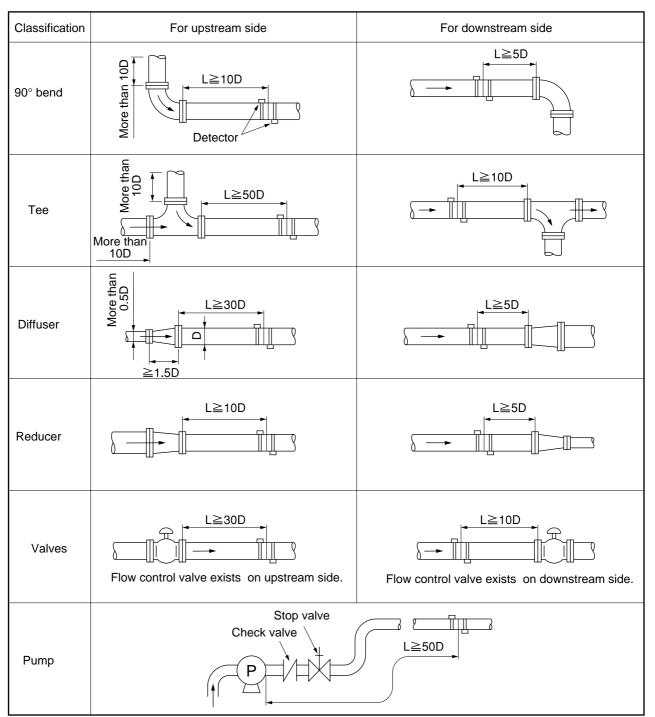

1. STANDARD SELECTION OF DETECTOR

(1) Selection from 5 types according to applications

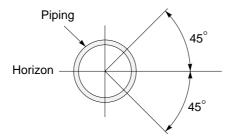


Detector	Туре	Inside diameter (mm)	Temperature range (°C)
Small diameter sensor	FLD22	13 to 100	-40 to 100
Small sensor (standard)	FLD12	50 to 400	-40 to 100
Middle sensor	FLD41	200 to 1200	-40 to 80
Large sensor	FLD51	200 to 6000	-40 to 80
High-temperature sensor	FLD32	50 to 400	-40 to 200

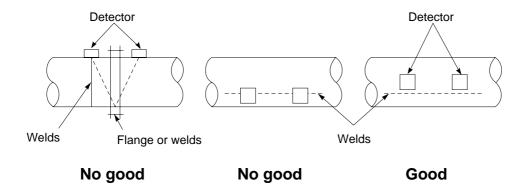
(2) Shape of each sensor


(3) Example of sensors mounted on pipe

2. CONDITIONS OF DETECTOR MOUNTING POSITIONS


- The piping must be filled with fluid which is free from air bubbles and foreign objects.
- Straight piping greater than 10D must exist on the upstream side and greater than 5D on the downstream side.
- Elements (pump, valve, etc) on the upstream side must be greater than 30D away to prevent disturbances.

(1) Necessary straight pipe length

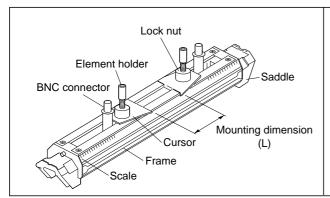


(2) Detector mounting considerations

1) For horizontal piping, the detector should be mounted within $\pm 45^{\circ}$ from the water level. For vertical piping, the detector can be mounted in any external position.

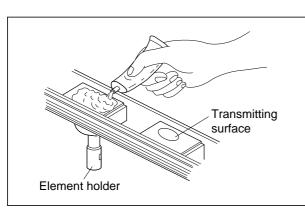
2) Avoid mounting the detector at positions with piping distortion, flange or welds.

3. MEASURABLE FLUID


Item	Specifications				
Measurable fluid	Ultrasonic propagative homogeneous fluids (water, seawater, oil or fluid even with unknown sonic speed), including the following liquids.				
		Acetoi	ne	Heavy water	
		Aniline		Carbon tetrachlorid	le
		Ether		Mercury	
		Ethyle	ne glycol	Nitrobenzene	
		Chlord	oform	Carbon bisulfide	
		Glycei	rin	n. pentane	
		Acetic	acid	n. hexane	
		Methy	l acetate	Spindle oil	
		Ethyl a	acetate	Gasoline	
Fluid	10000 (// //)				
turbidity	10000 (mg/L) or less				
Flow condition	Full-filled,axisymmetric and well developed flow				
Fluid temperature per detector	Detector		Туре	Inside diameter (mm)	Temperature range (°C)
per detector	Small diameter sens	or	FLD22	13 to 100	-40 to 100
	Small sensor (standard) Middle sensor Large sensor High-temperature sensor		FLD12	50 to 400	-40 to 100
			FLD41	200 to 1200	-40 to 80
			FLD51	200 to 6000	-40 to 80
			FLD32	50 to 400	-40 to 200
Velocity range	-32 to 0 to +32m	-32 to 0 to +32m/s			

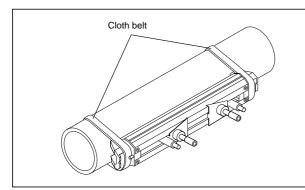
4. PIPING CONDITIONS

Item		Specifications
Piping diameter	Small diameter sensor Small sensor (standard) Middle sensor Large sensor High-temperature sensor	 <li: li="" to="" φ100mm<="" φ13=""> : φ50 to φ400mm : φ200 to φ1200mm : φ200 to φ6000mm : φ50 to φ400mm </li:>
Piping materials	Iron Copper Ductile cast iron Cast iron Stainless steel Steel Lead Aluminum	Brass Polyvinyl chloride Acrylic resin Mortar Tar epoxide Polyethylene Teflon FRP
Lining materials (coating materials for piping interior)	None Tar epoxide Mortar Rubber Teflon Pilex glass or materials with	known sonic speed


5. MOUNTING METHOD OF DETECTOR ON PIPING

Enter the piping specifications in the parameter of the converter to determine the sensor mounting dimension and then mount the sensor on the piping.

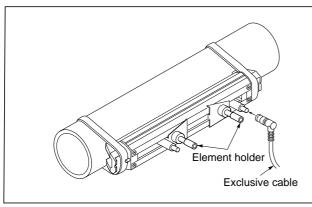
(1) Loosen the lock nut and slide the sensor so as to meet the specified mounting dimension (by rounding off the displayed mounting dimension value of the converter below the decimal point), and then tighten the nut.



(2) Apply the attached silicone grease to the transmitting surface of the sensor. Spread the compound over the entire area.

Keep the sensor retracted by turning the element holder counterclockwise.

After cleaning the surface of the pipe, the sensor should be mounted.



(3) Fix both ends (saddles) of the sensor to the pipe by the attached cloth belts. Mounting will be facilitated by winding the cloth belts on the pipe in advance.

Cloth belts are usable at 80°C or lower. If above 80°C, stainless steel belts should be used.

(4) Make sure the sensor is mounted in parallel with the pipe axis and the mounting dimension is correct. Then, turn the element holder clockwise until the sensor comes in close contact with the pipe.

Stop turning the element holder when it tightens as the transmitting surface comes in contact with the pipe surface. Be careful not to tighten the holder excessively.

6. OPERATION

Be sure to read the following items and record (check) the next page before using the flowmeter. Read these data together with the instruction manual.

(1) Make sure that the inside diameter of the piping being measured comforms to the sensor type.

Detector

Type

Inside diameter (mm)

Temperature range (°C)

Detector	Type	Inside diameter (mm)	Temperature range (°C)
Small diameter sensor	FLD22	13 to 100	-40 to 100
Small sensor (standard)	FLD12	50 to 400	-40 to 100
Middle sensor	FLD41	200 to 1200	-40 to 80
Large sensor	FLD51	200 to 6000	-40 to 80
High-temperature sensor	FLD32	50 to 400	-40 to 200

- (2) Check the lengths of the straight pipe upstream and downstream of the sensor mounting position.
 - Straight piping greater than 10D must exist on the upstream side and greater than 5D on the downstream side.
 - Elements (pump, valve, etc) on the upstream side must be greater than 30D away to prevent disturbances.
- (3) Check if the piping setting (outside diameter, material, thickness, etc.) is correct.
 - If the sensor mounting size is not calculated correctly, errors will occur such as window scan (reception range-over) or no received signal.
- (4) Check if the sensor is mounted correctly.
 - If the transmission side of the sensor is not coated sufficiently with silicone grease, receiving signals will become unstable or errors will occur such as window scans (receiving range-over), no received signals, etc.
 - If the upstream and downstream side connectors are reversed, a negative flow rate will be indicated.
- (5) Make sure that the zero point adjustment is completed.
 - Fill the piping with measuring fluid, then stop the flow of the fluid to perform a manual zero adjustment.
- (6) Check to see if more than 2 indicators on the upper right of the measurement screen are working to indicate wave reception.
 - If no indicator is displayed, or if only one is displayed, increase the level of the transmission voltage.
- (7) Check if the analog output range is set correctly.
 - Even when the analog output is not used, an error of analog scale-over will occur unless the analog output range has been set properly.
 - * Preparations for measurement have been completed.

Set the integrator, logger, printer, etc., as necessary. Check whether the flow rate is indicated correctly. If an error message is indicated, display the system check screen and press the ENT key while setting the cursor on the error checker.

At this time, the error data, the cause of the error and procedures to correct the error are indicated. Operate the flowmeter according to the instructions.

_	_	
	M	
	ě	7

Be sure to record (check) the following items before using the flowmeter.

Date of recording [day	month	year]	Place of measurement
Recorded by				

(1) Check the inside diameter of the piping to insure it conforms to the sensor type.

Detector	Type	(Mark ○ on sensor in use)	Piping inside diameter
Small diameter sensor	FLD22		mm
Small sensor (standard)	FLD12		mm
Middle sensor	FLD41		mm
Large sensor	FLD51		mm
High-temperature sensor	FLD32		mm

(2) Check for sufficient lengths of straight pipe upstream and downstream of the sensor mounting position.

	Straight piping	Pump, valve, etc.
Upstream side	D	With / Without
Downstream side	D	With / Without

(3) Check for correct piping settings (outer diameter size, material, thickness, etc.).

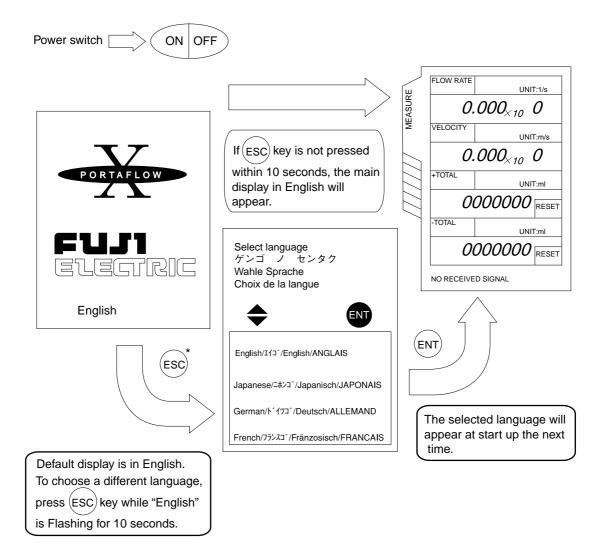
1. Site name	
2. Piping outer diameter size	mm
3. Piping material	
* Other (sonic speed setting)	m/s
4. Piping thickness (mm)	mm
5. Lining material	
* Other (sonic speed setting)	m/s
6. Lining thickness	mm

7. Kind of fluid	Water/Sea-water/()
* Sea-water/Coefficient of kinematic viscosity	m²/s
* Other/Fluid sound speed	m/s
* Other/Coefficient of kinematic viscosity	m²/s
8. Sensor mounting method	V method / Z method
9. Type of sensor	
10. Transmission voltage	×1 / ×2 / ×4 / ×8
11. Mounting size	mm

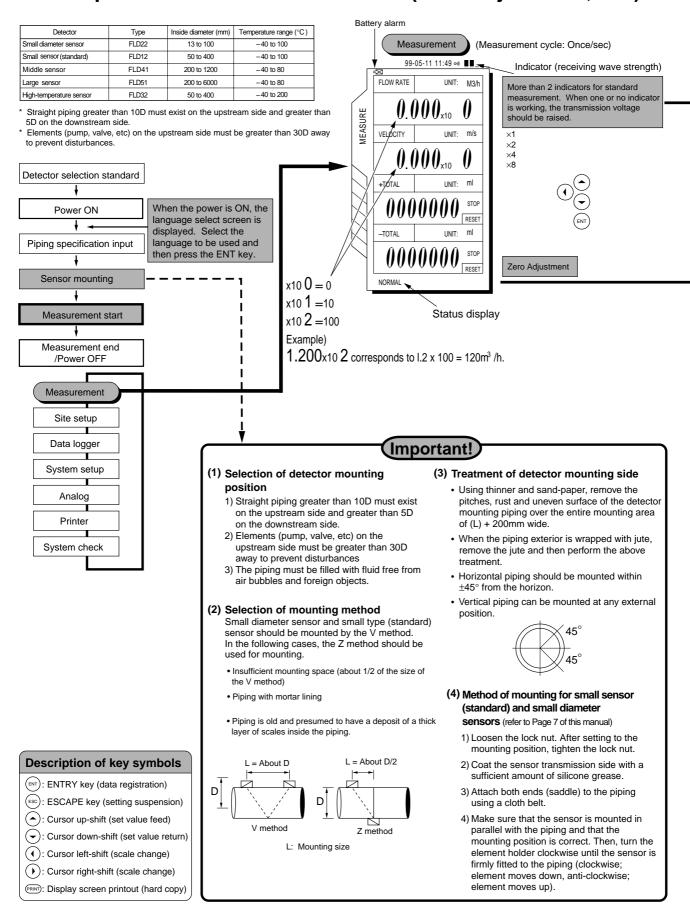
(4) Check for correct sensor mounting.

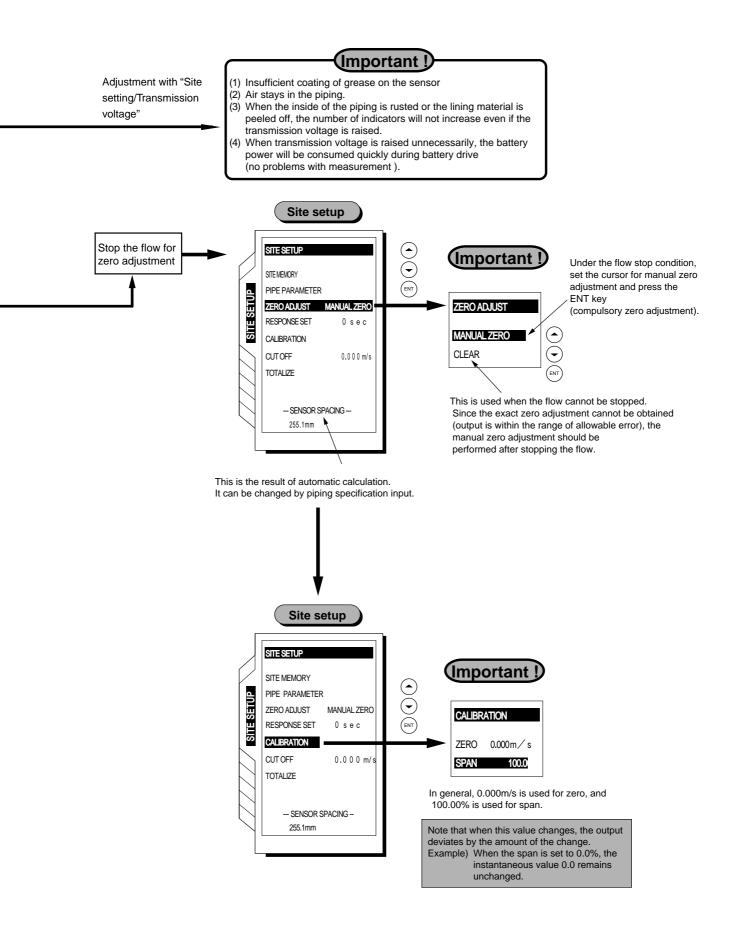
Silicone grease coating	No / Yes
Connector connection check	No / Yes

(5) Check the zero point adjustment.

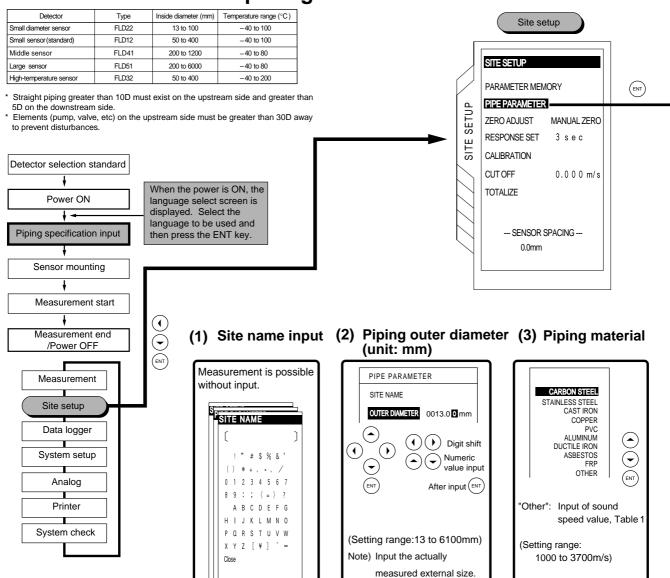

Zero point adjustment method: Manual zero clear (stop the flow of fluid for manual zero operation.)

(6)		neck that more than 2 indicators on the upper right of the measurement screen are orking to indicate received waves. Number of working indicators: [] (If neither indicator or only one indicator is working, increase the transmission voltage.)
(7)	Cł	neck if the analog output range is set properly. Output range set value: Recording (check) has been finished. Set the integrator, logger, printer, etc., as necessary.
•		Check if the flow rate is indicated correctly. If an error message is indicated, display the system check screen and press the ENT key while setting the cursor on the error check. At this time, the error data, the cause of the error and corrective action are indicated. Follow the operating instructions displayed on the screen.


6.1 Power ON - How to Select the Language


At the time of purchase of the flowmeter, English is used as the display language. To change it into Japanese, German or French, use the following procedure.

Once a language is set, it is stored in memory and it is not necessary to reset every time the power OFF.

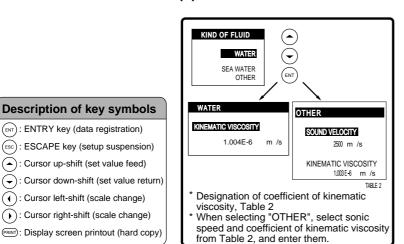


6.2 Preparation Prior to Measurement (Zero Adjustment, etc.)

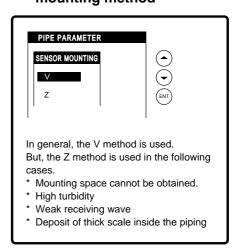
6.3 Piping Specification Input Method through Determination of Size for Sensor Spacing

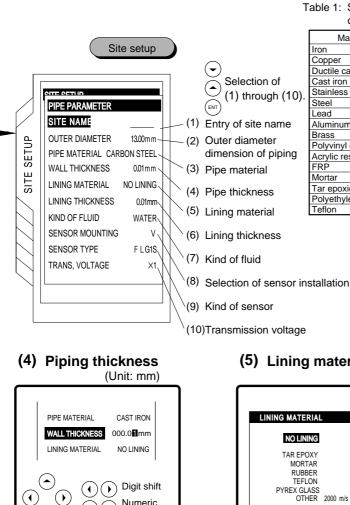
(7) Kind of fluid

Description of key symbols


(ESC): ESCAPE key (setup suspension)

: Cursor up-shift (set value feed)


(): Cursor left-shift (scale change)


: Cursor right-shift (scale change)

(ENT): ENTRY key (data registration)

(8) Selection of sensor mounting method

value input

After input (ENT)

of piping material Material Vm/s Iron 3230 Copper 3206 3000 Ductile cast iron Cast iron 2460 Stainless steel 3206 Steel 2260 Lead 2170

Table 1: Sonic speed

Aluminum 3080 2050 Brass Polyvinyl chloride 2640 Acrylic resin 2644

FRP

Mortar

Tar epoxide

Polyethylene Teflon

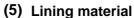
V: Sonic speed

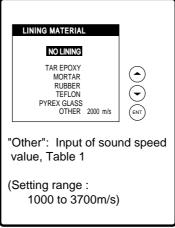
2505

2500

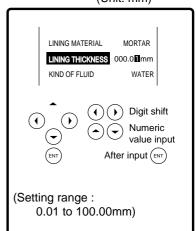
2505

1900

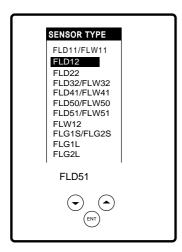

1240

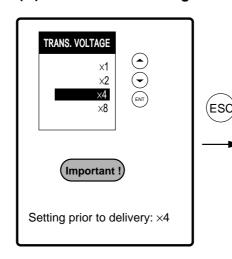

Table 2: Coefficient of kinematic viscosity of various fluids

Fluid name	T°C	ρg/cm ³	Vm/s	v (×10-6m²/s)
Acetone	20	0.7905	1190	0.407
Aniline	20	1.0216	1659	1.762
Ether	20	0.7135	1006	0.336
Ethylene glycol	20	1.1131	1666	21.112
Chloroform	20	1.4870	1001	0.383
Glycerin	20	1.2613	1923	1188.500
Acetic acid	20	1.0495	1159	1.162
Methyl acetate	20	0.9280	1181	0.411
Ethyl acetate	20	0.9000	1164	0.499
Heavy water	20	1.1053	1388	1.129
Carbon tetrachloride	20	1.5942	938	0.608
Mercury	20	13.5955	1451	0.114
Nitrobenzene	20	1.2070	1473	1.665
Carbon bisulfide	20	1.2634	1158	0.290
n. pentane	20	0.6260	1032	0.366
n. hexane	20	0.6540	1083	0.489
Spindle oil	32	0.9050	1324	15.700
Gasoline	34	0.8030	1250	0.4~0.5
Water	13.5	1.0000	1460	1.004 (20°C)

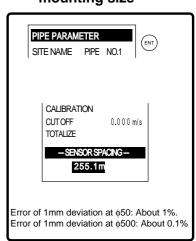

T: Temperature ρ : Density V: Sonic speed n: Coefficient of kinematic viscosity

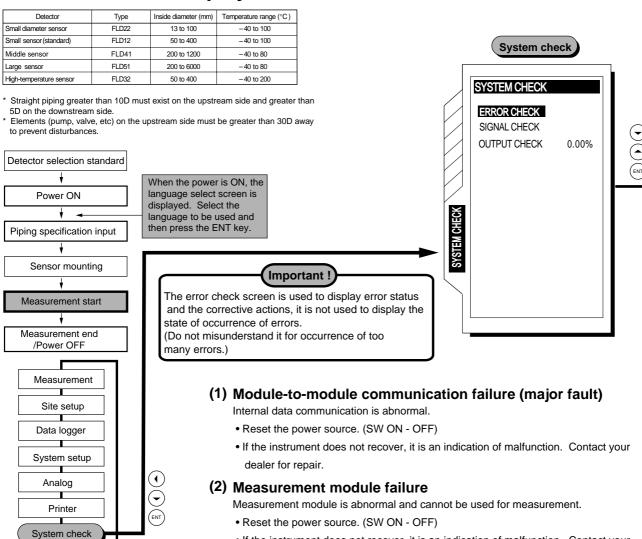
Note) For other fluids, see "DATA" given in Chapter 8.


(6) Lining thickness (Unit: mm)


(9) Kind of sensor

0.01 to 100.00mm)


(Setting range :


(10) Transmission voltage

(11) Determination of mounting size

6.4 Error Status Display and Corrective Actions

dealer for repair.

(3) Calculation failure

Measurement calculation is abnormal.

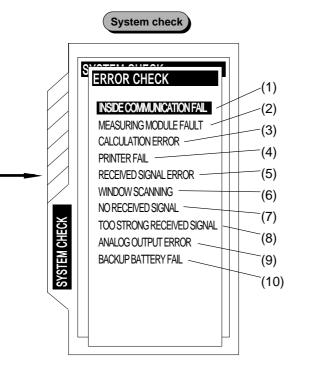
- Confirm the set data.
- Reset the power source. (SW ON OFF)
- If the instrument does not recover, it is an indication of malfunction. Contact your dealer for repair.

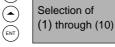
• If the instrument does not recover, it is an indication of malfunction. Contact your

(4) Printer failure

The printer has a problem and cannot be used for printing.

- Is the printer power turned on?
- Check to see if paper is jammed. Also, make sure that the printer is connected correctly to the main unit.
- Reset the power source for the main unit and printer.


(5) Receiving signal fluctuation


Measurement is impossible due to fluctuation of received ultrasonic waveform.

- Check to see if a large quantity of air bubbles or foreign objects have entered the piping.
- Change the sensor mounting position.
- Remove the cause of air bubbles or foreign objects.
- Check if the dedicated cable is improperly plugged in or disconnected.

Description of key symbols

- (ENT): ENTRY key (data registration)
- (ESC): ESCAPE key (setting suspension)
- : Cursor up-shift (set value feed)
- : Cursor down-shift (set value return)
- (): Cursor left-shift (scale change)
- : Cursor right-shift (scale change)
- (PRINT): Display screen printout (hard copy)

(6) Window scan

Received signal is lost in the measurement window. It is being searched.

- Check the setting of piping data.
- Open the PIPE PARAMETER screen. Measurement operation is reset and window scanning will start (It is not an error).

(7) No received signal

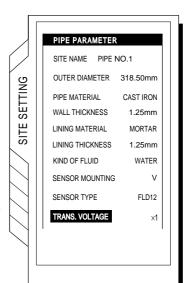
Ultrasonic waveform is lost.

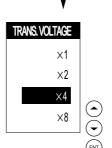
- Check the setting of piping data.
- Check the sensor mounting size.
- Check the connection of the cable.
- Raise the transmission voltage.

(8) Receiving signal overflow

Overflow of the strength of ultrasonic received signal

Change the sensor mounting method.
 Z method - V method

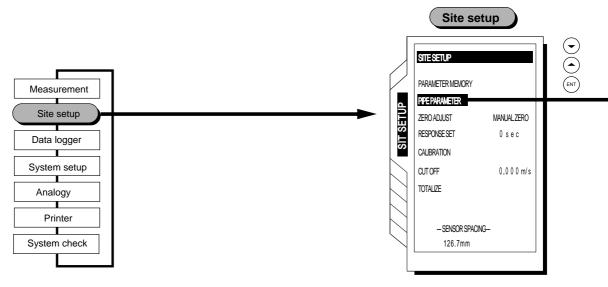

(9) Analog over-scale

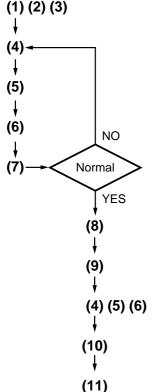

Over-scale of analog output

• Change the range setting. Refer to analog input/output setting.

(10) Backup failure

- Backup battery power is lost. The battery needs to be replaced.
 Contact our office for replacement.
- Measurement can be made but data backup cannot be made.
 Error is cleared when it passes through this panel.





Delivered with × 4 setting

6.5 Measurement of Fluid with Unknown Sonic Speed

(operation after inputting the piping input/output specifications)

(4) Measurement of unknown fluid

Temporarily set the sonic speed and the coefficient of kinematic viscosity of an approximate fluid (water soluble fluid is regarded as water), and obtain a measured value of sonic speed. If the sonic speed is not known at all, temporarily set the sonic speed by the following steps within the range 500 to 2500m/s.

 $\times 0.84 \quad \times 0.84$ $2500 \rightarrow 2100 \rightarrow 1764 \rightarrow 1482 \rightarrow 1245 \rightarrow 1046 \rightarrow 878 \rightarrow 738 \rightarrow 620 \rightarrow 521 \text{m/s}$

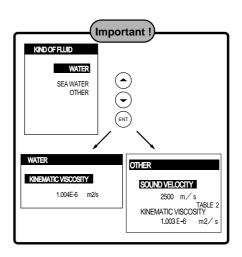


Table 2: Coefficient of kinematic viscosity of various fluids

Fluid name	T°C	ρg/cm ³	Vm/s	v (×10-6m²/s)
Acetone	20	0.7905	1190	0.407
Aniline	20	1.0216	1659	1.762
Ether	20	0.7135	1006	0.336
Ethylene glycol	20	1.1131	1666	21.112
Chloroform	20	1.4870	1001	0.383
Glycerin	20	1.2613	1923	1188.500
Acetic acid	20	1.0495	1159	1.162
Methyl acetate	20	0.9280	1181	0.411
Ethyl acetate	20	0.9000	1164	0.499
Heavy water	20	1.1053	1388	1.129
Carbon tetrachloride	20	1.5942	938	0.608
Mercury	20	13.5955	1451	0.114
Nitrobenzene	20	1.2070	1473	1.665
Carbon bisulfide	20	1.2634	1158	0.290
n. pentane	20	0.6260	1032	0.366
n. hexane	20	0.6540	1083	0.489
Spindle oil	32	0.9050	1324	15.700
Gasoline	34	0.8030	1250	0.4~0.5
Water	13.5	1.0000	1460	1.004 (20°C)

- T: Temperature ρ: Density V: Sonic speed
- v: Coefficient of kinematic viscosity

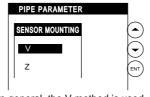
Note) For other fluids, see "DATA" given in Chapter 8.

Description of key symbols

- (ENT): ENTRY key (data registration)
- (ESC): ESCAPE key (setting suspension)
- (a): Cursor up-shift (set value feed)
- : Cursor down-shift (set value return)
- (): Cursor left-shift (scale change)
- () : Cursor right-shift (scale change)
- PRINT : Display screen printout (hard copy)
- (9) Setting of "Sonic speed" and "Coefficient of kinematic viscosity" of unknown fluid
 - Open "SITE SETUP" page.
 - Change the setting from "Kind of fluid" to "Other".

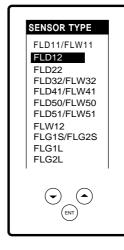
(Important !)

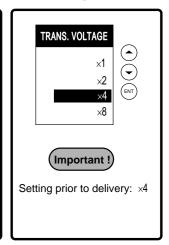
- Fluid sonic speed: Set ○X△ m/s in Item (8) .
- 2) Coefficient of kinematic viscosity: Referring to Table 1 "Coefficient of kinematic viscosity", set the coefficient of kinematic viscosity of an unknown fluid approximate to the fluid name (kind of fluid). (Note that this is not the coefficient of kinematic viscosity of fluid approximate to the sonic speed of the measured fluid.)

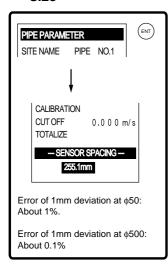

(1) Selection of sensor mounting method

(2) Kind of sensor

(3) Transmission voltage




piping input specifications (Page 6).

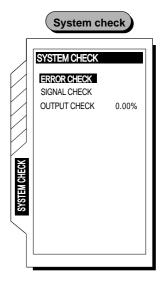

In general, the V method is used. But, the Z method is used in the following cases.

- Mounting space cannot be obtained.
- High turbidity
- Weak receiving wave
- Deposit of thick scale inside the piping

(5) Display of mounting size

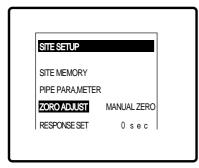
(6) Mounting of sensor

Refer to page 7.

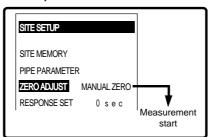

(7) Starting the flow measurement

- No received signal
- Window scan
- · Received signal overflow

When the above errors appear, repeat (4), (5), (6) procedures until it becomes "Normal".


- Measurement panel status display
- → "Normal" • More than 2 indicators are "ON" on the upper right of the screen.

(8) Opening the system check panel


- 1) Select "Signal check".
- Read measured value ○X△ m/s of "Fluid sonic speed" on the upper side of the panel.

(10) Stopping the flow for zero adjustment

(11) Starting the flow measurement

Stop the flow and perform zero adjustment.

Important! Measurement accuracy

Fluid sonic speed is entered approximately so the measurement accuracy is almost the same as "Accuracy of fluid with known sonic

speed". But, the accuracy is slightly worse to the extent that the coefficient of kinematicviscosity is not actual but approximate.

7.1 How is piping setting made when piping specifications are unknown?

Flow rate can be measured within the range of the specifications of PORTAFLOW X by entering the standard value, but the accuracy cannot be guaranteed.

- * Outer diameter can be confirmed by measuring the outside circumference.
- * Thickness can be confirmed by using a piping thickness gauge available optionally.
- * Lining material and its thickness can generally be estimated from the above-mentioned specifications and the standard specifications.

7.2 What is the effect of coating outside the piping?

In general, when the outside wall of the piping is rusted and contaminated with deposits of foreign objects, coating materials, etc., so the sensor is not fitted firmly to the piping, measurement cannot be made if there is an air gap which prevents the passage of ultrasonic waves.

In this case, the sensor should be mounted after removing the contamination.

Measurement at a point with uniform coating can be made without problems.

There are no problems with a thick coating (more than several mm), but the measurement accuracy can be improved by adding the lining thickness to the coating thickness and entering it prior to measurement.

When wrapped with jute, the jute should be removed before measurement.

7.3 What is the effect of scales in the piping?

Measurement can be made even when there are scales in the piping, but the amount of reduction of the sectional area due to scaling will become an error.

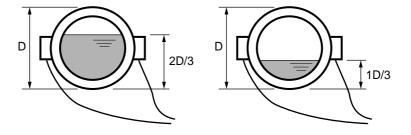
Therefore, the flow indicated is a little larger than the actual flow.

When the scale thickness is known, it can be compensated by adding it to the lining thickness and entering it for measurement. In general, the state of deposit of scales in old piping is not uniform, and shows an uneven surface. Therefore, an accurate cross-sectional area of flow passage cannot be measured.

Also, the flow profile is not uniform, and an accurate measurement of flow cannot be expected, strictly speaking.

7.4 What is homogenious fluid through which ultrasonic waves are transmitted?

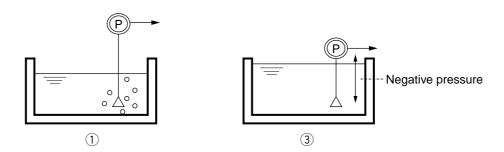
Municipal water can be measured over the range from raw water to clean water without problems. Sewage flows can be measured up to return sludge.


If the flow contains many air bubbles, it cannot be measured. In general, the less foreign objects (including air bubbles) the flow contains, the more easily can it be measured.

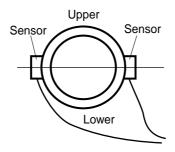
7.5 Is it possible to measure the flow in piping that is not full?

In horizontal piping, if the pipe is filled with liquid up to 2/3 of inside diameter D as shown below, the flow velocity can be measured. In this case, the flow rate indicated is the assumed one under filled pipe conditions.

Therefore, the flow indicated is larger than the actual flow.


If sludge is accumulated on the bottom of the piping, the flow velocity can be measured up to 1/3 of inside diameter D. In this case, the flow rate indicated is the assumed one under filled pipe conditions without any sludge.

7.6 What happens when the liquid contains air bubbles?


When liquid contains excessive air bubbles, no measurement can be made because of transmission failure of the ultrasonic waves. When air bubbles enter the liquid momentarily, the output is retained by the self-check function, thereby causing no problems. Air bubbles easily enter liquid in the following cases.

- (1) Suction of air due to low liquid level of pump well
- (2) Occurrence of cavitation
- (3) Pressure in the piping becomes negative and air enters from piping connection.

7.7 What about mounting the sensor on horizontal piping?

The sensor should be mounted in the horizontal direction on the piping circumference to prevent the effects of accumulated sludge (lower) and air bubbles (upper).

7.8 What about mounting the sensor on vertical piping?

The sensor can be mounted on any external position of vertical piping.

The recommendable flow direction is upward to avoid the interference of bubbles.

7.9 When the length of straight piping is short and a pump, valve, orifice, etc. is present, what is required for measurement?

In general, the length of straight piping on upstream side should be longer than 10D, and that on downstream side should be longer than 5D. When a pump, valve, orifice, etc. is present, measurement should be made at a location greater than 30D away on the upstream side and greater than 5D away on the downstream side. (See page 3 for detail.)

7.10 How far can the sensor extension cord be extended?

Extension cords can be connected and extended up to 100m.

(Special cable with BNC connector: 10m x 2 or 50m x 2 available optionally)

7.11 What is the approximate accuracy of measurement?

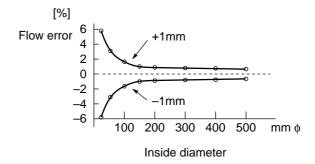
Specifications:

Inside diameter	Flow velocity	Accuracy
φ13 to φ50 or less	2 to 32 m/s	±1.5% of measured flow
	0 to 2 m/s	±0.03 m/s*1
φ50 to φ300 or less	2 to 32 m/s	±1.0% of measured flow
	0 to 2 m/s	±0.02 m/s
φ300 to φ6000	1 to 32 m/s	±1.0% of measured flow
	0 to 1 m/s	±0.01 m/s

*1: Example of calculation

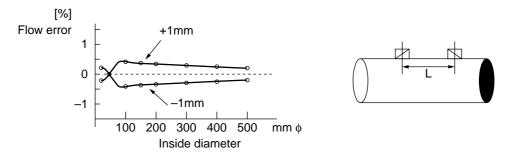
Error at 2m/s? $\rightarrow \pm 0.03 \times 100/2 = \pm 1.5\%$ Error at 1m/s? $\rightarrow \pm 0.03 \times 100/1 = \pm 3.0\%$

Formerly, the expression \bigcirc % of full scale was often used. But, in the recent age of digital system, it is more frequently expressed in % of the displayed value. Under the condition of low flow velocity, the absolute value of error is used as a standard of accuracy in consideration of the threshold of device performance.


7.12 What about error factors?

On PORTAFLOW X, ultrasonic waves are emitted from the outside of the piping and the time is measured while the waves are passing through the piping material - fluid - piping material. Therefore, the flow coefficient is determined according to the piping material, size and the angle of propagation of sound waves. As mentioned on the previous page, the following points become the error factors to be considered when evaluating the measured values.

(1) Piping size

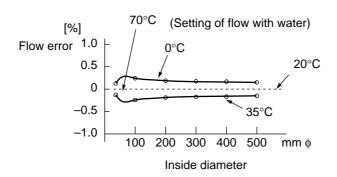

When the value set for piping size is different from the actual size of piping, and if the difference from the inside diameter is about 1% in size, the error is about 3% of deviation obtained by flow conversion.

(The following shows an example of 1mm deviation in inside diameter)

(2) Difference in sensor mounting length

As a general standard, when the error in mounting length is ± 1 mm, the error of flow is within 1%.

(3) Flow in piping is deviated


When the straight piping is short (particularly upstream side), the flow has become skewed and some deviation error will occur, or fluctuation of indicated value will occur when the flow is swirling.

(4) Inside diameter different from set value due to deposits of scales inside the piping The error is the same as noted in 1). If scales are badly deposited, receiving waves are not

available and measurement may be disabled.

(5) Change in water temperature

Temperature is compensated, but there is a slight error when temperature changes.

(6) Weak received wave due to improper mounting condition and piping condition

Measurement may be possible. But, if received wave is weak, it may result in a large error due to the effect of external noise.

7.13 What about comparison with other flowmeters?

Although thermometers and pressure gauges can easily be calibrated at a site, flowmeters are generally very difficult to calibrate at a site.

Therefore, PORTAFLOW X is often used for checking other flowmeters. After checking, the result of comparison of flowmeters should be evaluated with care while considering to the following points.

(1) Consideration of error of each flowmeter

In case of $5000 \text{m}^3/\text{h}$ full-scale flowmeter with performance of $\pm 1\%$ full-scale, an error of $\pm 5 \text{m}^3/\text{h}$ can be considered at any range.

The error of PORTAFLOW X should also be added when evaluating the total error.

When the error range is the same for both the result of the check is considered normal.

(2) Study data systematically, if an error is found.

Check points of flowmeter are the following 3 factors.

- (1) Zero point
- (2) Span (flow range)
- (3) Linearity

Do not compare values only at 1 point of flow. Draw many samples on a graph and arrange them systematically. Determine the error in the above 3 points and perform calibrations.

(3) Thoroughly check the piping system.

If fluid flows into or out of a branch pipe in the middle of a piping system, the comparison data of each side of such a pipe-junction may not match each other.

When there is storage in the middle of piping system and it becomes a buffer for the flow, the liquid level of the storage area should be taken into consideration.

(4) Comparison of 2 different sets of flowmeters is difficult.

When there is a difference between 2 sets of flowmeters, it is difficult to judge the correct one. So, another judgement criteria needs to be considered.

7.14 What is the difference between a Doppler type flowmeter and PORTAFLOW X?

A Doppler type flowmeter emitts ultrasonic waves and receives the waves reflected from foreign objects in the fluid.

Velocity is measured utilizing the principle that the frequency deviation of the received waves from the emitted ones is in proportion to the flow velocity (Doppler effect).

Therefore:

- (1) The fluid must contain foreign objects (including air bubbles). It is not suited for clean water but is suited for sewage.
- (2) Since the position in the fluid where the reflection occurs is obscure, the amount and nature of foreign objects in the fluid affect the measuring accuracy together with the velocity profile in the piping.

PORTAFLOW X is designed to measure the velocity with ultrasonic waves passing through piping. As it measures an average velocity in the piping, it measures flow rate highly accurately.

The Doppler system has the above-mentioned disadvantage, but it is used to measure an approximate flow from the outside of the piping, permitts liquids with large amount of foreign objects, and is effectively used for liquids with slurry or air bubbles.

7.15 Life span of LCD

The life span of LCD is considered to be about 10 years under general operating conditions, according to the manufacturer's catalogue. Generally, it is about 5 to 6 years in actual service. The life span is not so much related to the number of displaying operations.

(1) Sonic Speed of Solid (at 25°C) (2) Sonic Speed of Water

Material	Sound Speed (m/s)	Material	Sound Speed (m/s)
Steel 1% Carbon, hardened	3150	Iron(Armco)	3230
Carbon Steel	3206	Ductile Iron	3000
Mild Steel	3235	Monel	2720
Steel 1% Carbon	3220	Nickel	2960
Stainless Steel 302	3120	Tin, rolled	1670
Stainless Steel 303	3120	Titanium	3125
Stainless Steel 304	3206	Tungsten,annealed	2890
Stainless Steel 316	3175	Tungsten, drawn	2640
Stainless Steel 347	3100	Tungsten, carbide	3980
Stainless Steel 410	2990	Zinc, rolled	2440
Stainless Steel 430	3360	Glass, Pyrex	3280
Aluminum	3080	Glass, heavy silicate flint	2380
Aluminum(rolled)	3040	Glass, light borate crown	2840
Copper	2260	Nylon	2400
Copper(annealed)	2325	Nylon,6-6	1070
Copper(rolled)	2270	Polyethylene(HD)	2310
CuNi (70%Cu 30%Ni)	2540	Polyethylene(LD)	1940
CuNi (90%Cu 10%Ni)	2060	PVC, CPVC	2400
Brass(Naval)	2050	Acrylic	2730
Gold(hard-brawn)	1200	Asbestos Cement	2200
Inconel	3020	Tar Epoxy	2000
Iron(electrolytic)	3240	Mortar	2500
Cast Iron	3230	Rubber	1900
Lead	2170	FRP	2505
Teflon	1240		

Temperature (°C)	Sound Speed (m/s)	Temperature (°C)	Sound Speed (m/s)
0	1402.74	52	1544.95
2	1412.57	54	1546.83
4	1421.96	56	1548.51
6	1430.92	58	1550.00
8	1439.46	60	1551.30
10	1447.59	62	1552.42
12	1455.34	64	1553.35
14	1462.70	66	1554.11
16	1469.70	68	1554.70
18	1476.35	70	1555.12
20	1482.66	72	1555.37
22	1488.63	74	1555.47
24	1494.29	76	1555.40
26	1499.64	78	1555.18
28	1504.68	80	1554.81
30	1509.44	82	1554.30
32	1513.91	84	1553.63
34	1518.12	86	1552.82
36	1522.06	88	1551.88
38	1525.74	90	1550.79
40	1529.18	92	1549.58
42	1532.37	94	1548.23
44	1535.33	96	1546.75
46	1538.06	98	1545.14
48	1540.57	100	1543.41
50	1542.84		

(3) Sonic Speed of Fluid

1/4

Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10 ⁻⁶)	Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10 ⁻⁶)
Acetic acid	CH₃COOH	20	1159		Carbon dioxide	CO ₂	-37	839	0.137
Acetic anhydride	(CH ₃ CO) ₂ O	20	1180	0.769	Carbon disulphide	CS ₂	20	1158	0.290
Acetic acid,	(CH ₃ CO) ₂ O	20	1180	0.769	Carbon tetrachloride	CCI₄	20	938	0.608
anhydride					Cetane	C ₁₆ H ₃₄	20	1338	4.32
Acetonitrile	C ₂ H ₃ N	25	1290	0.441	Chlorobenezene	C ₆ H₅CI	20	1289	0.722 (25°C)
Ethyl acetate	C ₄ H ₈ O ₂	25	1085	0.467	1-Chlorobutane	C₄H₀CI	25	1140	0.529
Methyl acetate	C ₃ H ₆ O ₂	25	1211	0.407	Chloroform	CHCl₃	20	931	0.383
Acetone	C₃H ₆ O	20	1190	0.407	1-chloropropane	C₃H ₇ CI	25	1058	0.378
Acetonitrile	C ₂ H ₃ N	25	1290	0.441	Cinnamaldehyde	C ₉ H ₈ O	25	1554	
Acetonylacetone	C ₆ H ₁₀ O ₂	25	1399		Cinnamic aldehyde	C ₉ H ₈ O	25	1554	
Acetylen dichloride	C ₂ H ₂ Cl ₂	25	1015	0.400	Colamine	C ₂ H ₇ NO	25	1724	
Acetylene tetrabromide	C ₂ H ₂ Br ₄	25	1027		o-cresol	C ₇ H ₈ O	20	1541	4.29 (40°C)
Acetylene	C ₂ H ₂ Cl ₄	25	1147	1.156 (15°C)	m-cresol	C ₇ H ₈ O	20	1500	5.979 (40°C)
tetracloride					Cyanomethane	C₂H₃N	25	1290	0.441
Ethyl alcohol	C₂H ₆ O	25	1207	1.396	Cyclohexane	C ₆ H ₁₂	20	1284	1.31 (17°C)
Alkazene-13	C ₁₅ H ₂₄	25	1317		Cyclohexanol	C ₆ H ₁₂ O	25	1454	0.071 (17°C)
Alkazene-25	C ₁₀ H ₁₂ Cl ₂	25	1307		Cyclohexanone	C ₆ H ₁₀ O	25	1423	
2-amino-ethanol	C ₂ H ₇ NO	25	1724		Decane	C ₁₀ H ₂₂	25	1252	1.26 (20°C)
2-aminotolidine	C ₇ H ₉ N	25	1618	4.394 (20°C)	1-decene	C ₁₀ H ₂₀	25	1235	
4-aminotolidine	C ₇ H ₉ N	25	1480	1.863 (50°C)	n-decylene	C ₁₀ H ₂₀	25	1235	
Ammonia	NH₃	-33	1729	0.292	Diacetyl	C ₄ H ₆ O ₂	25	1236	
t-amyl alcohol	C ₅ H ₁₂ O	25	1204	4.374	Diamylamine	C ₁₀ H ₂₃ N	25	1256	
Aminobenzene	C ₆ H ₅ NO ₂	25	1639	3.63	1, 2-dibromo-ethane	C ₂ H ₄ Br ₂	25	995	0.79 (20°C)
Aniline	C ₆ H ₅ NO ₂	20	1659	1.762	trans-1, 2-	C ₂ H ₂ Br ₂	25	935	
Azine	C ₆ H ₅ N	25	1415	0.992	dibromoethene				
Benzene	C ₆ H ₆	25	1306	0.711	Dibutyl phthalate	C ₆ H ₂₂ O ₄	25	1408	
Benzol	C ₆ H ₆	25	1306	0.711	Dichloro-t-butyl	C ₄ H ₈ Cl ₂ O	25	1304	
Bromine	Br ₂	25	889	0.323	alcohol				
Bromobenzene	C ₆ H₅Br	25	1170	0.693	2, 3-dichlorodixane	C ₂ H ₆ Cl ₂ O ₂	25	1391	
1-bromo-butane	C₄H₃Br	20	1019	0.49 (15°C)	dichlorodi-	CCl ₂ F ₂	25	774.1	
Bromoethane	C₂H₅Br	20	900	0.275	fluoromethane				
Bromoform	CHBr₃	20	918	0.654	(Freon 12)				
n-butane	C ₄ H ₁₀	-5	1085		1, 2-dichloro ethane	C ₂ H ₄ Cl ₂	25	1193	0.61
2-butanol	C ₄ H ₁₀ O	25	1240	3.239	cis1, 2-dichloro-	C ₂ H ₂ Cl ₂	25	1061	
sec-butylalcohol	C ₄ H ₁₀ O	25	1240	3.239	ethane				
n-butyl bromide	C₄H₃Br	20	1019	0.49 (15°C)	trans 1, 2-dichloro-	C ₂ H ₂ Cl ₂	25	1010	
n-butyl chloride	C ₄ H ₉ Cl	25	1140	0.529	ethane				
tert butyl chloride	C ₄ H ₉ Cl	25	984	0.646	Dichlorofluoro-	CHCl₂F	0	891	
Butyl oleate	C ₂₂ H ₄₂ O ₂	25	1404	0.529	methane (Freon21)		L		
2,3 butylene glycol	C ₄ H ₁₀ O ₂	25	1484		1-2-dichlorohexa-	C ₄ Cl ₂ F ₆	25	669	
Carbinol	CH₄O	25	1076	0.695	fluorocyclobutane				
Carbitol	C ₆ H ₁₄ O ₃	25	1458		1-3-dichloro-	C ₄ H ₈ Cl ₂	25	1220	
Carbon dioxide	CO ₂	-37	839	0.137	isobutane				

2/4

Substance	Form Index	Temp.	Sound Speed	Kinematic Viscosity
		(0)	(m/s)	(m ² /s ×10 ⁻⁶)
Dichloro methane	CH ₂ Cl ₂	25	1070	0.31
1, 1-dichloro-	CCIF ₂ -CCIF ₂	25	665.3	
1, 2, 2, 2-tetra				
fluoroethane				
Diethyl ether	C ₄ H ₁₀ O	25	985	0.311
Diethylene glycol	C ₄ H ₁₀ O ₃	25	1586	
Diethylene glycol,	C ₆ H ₁₄ O ₃	25	1458	
monoethyl ether				
Diethylenimide	C ₄ H ₉ NO	25	1442	
oxide				
1, 2-bis	C ₄ H ₈ (NF ₂) ₂	25	1000	
(difluoramino)				
butane				
1, 2-bis	C ₄ H ₉ (NF ₂) ₂	25	900	
(difluoramino)-				
2-methylpropane				
1, 2-bis	C ₃ H ₆ (NF ₂) ₂	25	960	
(difluoramino)				
propane				
2, 2-bis	C ₃ H ₆ (NF ₂) ₂	25	890	
(difluoramino)				
propane				
2, 2-dihydroxy-	C ₄ H ₁₀ O ₃	25	1586	
dilethyrther				
Dihdroxyethane	C ₂ H ₆ O ₂	25	1658	
1, 3-dimethyl-	C ₈ H ₁₀	20	1343	0.749 (15°C)
benzene				
1, 2-dimethyl-	C ₈ H ₁₀	25	1331.5	0.903 (20°C)
benzene				
1, 4-dimethyl-	C ₈ H ₁₀	20	1334	0.662
benzene				
2,2-dimethyl-	C ₆ H ₁₄	25	1079	
butane				
Dimethyl ketone	C₃H ₆ O	25	1174	0.399
Dimethyl pentane	C ₇ H ₁₆	25	1063	
(47)				
Dimethyl phthalate	C ₈ H ₁₀ O ₄	25	1463	
Diiodo-methane	CH ₂ I ₂	25	980	
Dioxane	C ₄ H ₈ O ₂	25	1376	
Dodecane (23)	C ₁₂ H ₂₆	25	1279	1.80
1, 2-ethanediol	C ₂ H ₆ O ₂	25	1658	
Ethanenitrile	C ₂ H ₃ N	25	1290	0.441
Ethanoic anhydride	(CH ₃ CO) ₂ O	25	1180	0.769
(22)	/25			
· /		<u> </u>		

Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10-6)
Ethanol	C ₂ H ₆ O	25	1207	1.39
Ethanol amide	C ₂ H ₇ NO	25	1724	
Ethoxyethane	C ₄ H ₁₀ O	25	985	0.311
Ethyl acetate	C ₄ H ₈ O ₂	20	1164	0.499
Ethyl alcohol	C ₂ H ₆ O	25	1207	1.396
Ethyl benzene	C ₈ H ₁₀	20	1338	0.797(17°C)
Ethyl Bromide	C₂H₅Br	20	900	0.275
Ethyliodide	C ₂ H ₅ I	20	876	0.29
Ether	C ₄ H ₁₀ O	20	1006	0.336
Ethyl ether	C ₄ H ₁₀ O	25	985	0.311
Ethylene bromide	C ₂ H ₄ Br ₂	25	995	0.79
Ethylene chloride	C ₂ H ₄ Cl ₂	25	1193	0.61
Ethylene glycol	C ₂ H ₆ O ₂	20	1666	21.112
50% glycol/		25	1578	
50% H₂O				
d-fenochone	C ₁₀ H ₁₆ O	25	1320	0.22
d-2- fenochone	C ₁₀ H ₁₆ O	25	1320	0.22
Fluoro-benzene (46)	C ₆ H ₅ F	25	1189	0.584
Formaldehyde,	$C_2H_4O_2$	25	1127	
methylester				
Formamide	CH₃NO	25	1622	2.91
Formic asid, amide	CH₃NO	25	1622	2.91
Freon R12		25	774.2	
Furfural	C ₅ H ₄ O ₂	25	1444	
Furfuryl alcohol	C ₅ H ₆ O ₂	25	1450	
Fural	$C_5H_4O_2$	25	1444	
2-furaldehyde	C ₅ H ₄ O ₂	25	1444	
2-furancarboxalde-	$C_5H_4O_2$	25	1444	
hyde				
2-furyl-methanol	C ₅ H ₆ O ₂	25	1450	
Gallium	Ga	30	2870	
Glicerin	C ₃ H ₈ O ₃	20	1923	1188.5
Glycerol	C ₃ H ₈ O ₃	25	1904	757.1
Glycol	C ₂ H ₆ O ₂	25	1658	
Heptane	C ₇ H ₁₆	25	1131	0.598(20°C)
n-heptane	C ₇ H ₁₆	25	1180	
Hexachloro-	C ₅ Cl ₆	25	1150	
cyclopentadiene				
Hexadecane	C ₁₆ H ₃₄	25	1338	4.32(20°C)
Hexalin	C ₁₆ H ₁₂	25	1454	70.69(17°C)
Hexane	C ₆ H ₁₄	25	1112	0.446
n-hexane	C ₆ H ₁₄	20	1083	0.489
2, 5-hexanedione	$C_6H_{10}O_2$	25	1399	
n-hexanol	C ₆ H ₁₄ O	25	1300	

Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10-6)
Hexahydrobenzene	C ₆ H ₁₂	25	1248	1.31(17°C)
Hexahydrophenol	C ₆ H ₁₂ O	25	1454	, ,
Hexamethylene	C ₆ H ₁₂	25	1248	1.31
2-hydroxy-toluene	C ₇ H ₈ O	20	1541	4.29 (40°C)
3-hydroxy-toluene	C ₇ H ₈ O	20	1500	5.979 (40°C)
lodo-benzene	C ₆ H₅I	20	1114	0.954
lodo-ethane	C ₂ H ₅ I	20	876	0.29
lodo-methane	CH₃I	25	978	0.211
Isobutyl acetate	C ₆ H ₁₂ O	27	1180	
Isobutanol	C ₄ H ₁₀ O	25	1212	
Iso-butane		25	1219.8	0.34
Isopentane	C ₅ H ₁₂	25	980	0.34
Isopropanol (46)	C₃H ₈ O	20	1170	2.718
Isopropyl alcohol	C₃H ₈ O	20	1170	2.718
Kerosene		25	1324	
Ketohexamethylene	C ₆ H ₁₀ O	25	1423	
Mercury	Hg	20	1451	0.114
Mesityloxide	C ₆ H ₁₆ O	25	1310	
Methanol	CH₄O	25	1076	0.695
Methyl acetate	C ₃ H ₆ O ₂	20	1181	0.411
o-methylaniline	C ₇ H ₉ N	25	1618	4.394 (20°C)
4-methylaniline	C ₇ H ₉ N	25	1480	1.863 (50°C)
Methyl alcohol	CH₄O	25	1076	0.695
Methyl benzene	C ₇ H ₈	20	1328	0.644
2-methyl-butane	C ₅ H ₁₂	25	980	0.34
Methyl carbinol	C ₂ H ₆ O	25	1207	1.396
Methyl-chloroform	C ₂ H ₃ Cl ₃	25	985	0.902 (20°C)
Methyl-cyanide	C ₂ H ₃ N	25	1290	0.441
3-methyl	C ₇ H ₁₄ O	25	1400	
cyclohexanol				
Methylene chloride	CH ₂ Cl ₂	25	1070	0.31
Methylene iodide	CH ₂ I ₂	25	980	
Methyl formate	C ₂ H ₄ O ₂	25	1127	
Methyl iodide	CH₃I	25	978	0.211
α-methyl napthalene	C ₁₁ H ₁₀	25	1510	
2-methylphenol	C ₇ H ₈ O	20	1541	4.29 (40°C)
3-methylphenol	C ₇ H ₈ O	20	1500	5.979 (40°C)
Milk, homogenized		25	1548	
Morpholine	C ₄ H ₉ NO	25	1442	
Naphtha		25	1225	
Nitrobenzene	C ₆ H ₅ NO ₂	20	1473	1.665
Nitromethane	CH ₃ NO ₂	25	1300	0.549
Nonane	C ₉ H ₂ O	25	1207	0.99(20°C)
1-nonene	C ₉ H ₁₈	25	1207	

Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10-6)
Octane	C ₈ H ₁₈	25	1172	0.73
n-octane	C ₈ H ₁₈	20	1192	0.737(25°C)
1-octene	C ₈ H ₁₆	25	1175.5	
Oil of camphor		25	1390	
Sassafrassy				
Oil, car(SAE 20a.30)		25	870	190
Oil, castor	C ₁₁ H ₁₀ O ₁₀	25	1477	0.670
Oil, diesel		25	1250	
Oil, fuel AA gravity		25	1485	
Oil (Lubricating X200)		25	1530	
Oil (olive)		25	1431	100
Oil (peanut)		25	1458	
Oil (sperm)		25	1440	
Oil, 6		22	1509	
2, 2-oxydiethanol	$C_4H_{10}O_3$	25	1586	
Pentachloroethane	C ₂ HCl ₅	25	1082	
Pentalin	C ₂ HCl ₅	25	1082	
Pentane	C ₅ H ₁₂	25	1020	0.363
n-pentane	C ₅ H ₁₂	20	1032	0.366
Perchlorocyclo-	C ₅ Cl ₆	25	1150	
pentadiene				
Perchloroethylene	C ₂ Cl ₄	25	1036	
Perchloro-1-hepten	C ₇ F ₁₄	25	583	
Perfluoro-n-hexane	C ₆ F ₁₄	25	508	
Phene	C ₆ H ₆	25	1306	0.711
β-phenyl acrolein	C ₉ H ₈ O	25	1554	
Phenyl amine	C ₆ H ₅ NO ₂	25	1639	3.63
Phenyl bromide	C ₆ H₅Br	20	1170	0.693
Phenyl chloride	C ₆ H ₅ CI	25	1273	0.722
Phenyl iodide	C ₆ H ₅ I	20	1114	0.954(15°C)
Phenyl methane	C ₇ H ₈	20	1328	0.644
3-Phenyl propenal	C ₉ H ₈ O	25	1554	
Phthalardione	C ₈ H ₄ O ₃	152	1125	
Pimelic ketone	C ₆ H ₁₀ O	25	1423	
Plexiglas, lucite,		25	2651	
acrylic				
Refrigerant 11	CCl₃F	0	828.3	
Propane	C₃H ₈	-45	1003	
1, 2, 3-propanetriol	C ₃ H ₈ O ₃	25	1904	0.757×10 ⁻³
1-propanol	C₃H ₈ O	20	1222	
2-propanol	C₃H ₈ O	20	1170	2.718
2-propanone	C₃H ₆ O	25	1174	0.399
Propene	C₃H ₆	-13	963	
n-propyl acetate	C ₅ H ₁₀ O ₂	2	1280	

4/4

Cubatanaa	Form	Tomp	Sound	Kinematic
Substance	Index	Temp. (°C)	Speed	Viscosity
			(m/s)	(m ² /s ×10 ⁻⁶)
n-propyl alcohol	C₃H ₈ O	20	1225	2.549
Propylchloride	C₃H ₇ CI	25	1058	0.378
Propylene	C₃H ₆	-13	963	
Pyridine	C ₆ H ₅ N	25	1415	0.992(20°C)
Refrigerant 11	CCl₃F	0	828.3	
Refrigerant 12	CCl ₂ F ₂	-40	774.1	
Refrigerant 21	CHCl₂F	0	891	
Refrigerant 22	CHCIF ₂	50	893.9	
Refrigerant 113	CCl ₂ F-CClF ₂	0	783.7	
Refrigerant 114	CCIF ₂ -CCIF ₂	-10	665.3	
Refrigerant 115	C₂CIF₅	-50	656.4	
Refrigerant C318	C ₄ F ₈	-10	574	
Silicone (30cp)		25	990	30
Solvesso #3		25	1370	
Spirit of wine	C ₂ H ₆ O	25	1207	1.396
Sulfuric Acid	H₂SO₄	25	1257.6	11.16
1, 1, 2, 2-tetrabromo-	C ₂ H ₂ Br ₄	25	1027	
ethane				
1, 1, 2, 2-tetrachloro-	C ₂ H ₂ Cl ₄	25	1147	1.156 (15°C)
ethane				
Tetrachloroethane	C ₂ H ₂ CI ₄	20	1170	1.19
Tetrachloroethene	C ₂ Cl ₄	25	1036	
Tetrachloro-	CCI ₄	25	926	0.607
Methane				
Tetradecane	C ₁₄ H ₃ O	20	1331	2.86
Tetraethylene glycol	C ₈ H ₁₈ O ₅	25	1586	
Tetrahydro-1,	C ₄ H ₉ NO	25	1442	
4-isoxazine				
Toluene	C ₇ H ₈	20	1328	0.644
o-toluidine	C ₇ H ₉ N	25	1618	4.394 (20°C)
p-toluidine	C ₇ H ₉ N	25	1480	1.863 (50°C)
Toluol	C ₇ H ₈	25	1308	0.58
Tribromomethane	CHBr ₃	25	918	0.654
1, 1, 1-trichloro-	C ₂ H ₃ Cl ₃	25	985	0.902 (20°C)
ethane			-	
Trichloro-ethene	C₂HCl₃	25	1028	
Trichloro-	CCl₃F	0	828.3	
fluoromethane				
(Freon 11)				
Trichloro-methane	CHCl₃	25	979	0.55
1, 1, 2-trichloro-	CCI ₂ F-CCIF ₂	0	783.7	
1, 2, 2-trifluoro-	2.2. 23 2			
etham				
Triethylamine	C ₆ H ₁₅ N	25	1123	
monyamine	O61 1151 V	23	1120	

Substance	Form Index	Temp. (°C)	Sound Speed (m/s)	Kinematic Viscosity (m²/s ×10-6)
Triethylene glycol	C ₆ H ₁₄ O ₄	25	1608	,
1, 1, 1-trifluoro-	C₂HClBrF₃	25	693	
2-chloro-2-bromo-				
ethane				
1, 2, 2-trifluorotrichlo-	CCl ₂ F-CCIF ₂	0	783.7	
ethane (Freon 113)				
d-1,3,3-	C ₁₀ H ₁₆ O	25	1320	0.22
trimethylnorcamphor				
Trinitrotoluene	C ₇ H ₅ (NO ₂) ₃	81	1610	
Turpentine		25	1255	1.4
Unisis 800		25	1346	
Water, distilled	H₂O	20	1482	1.00
Water, heavy	D ₂ O	20	1388	1.129
Water, sea		20	1520	1.00
Wood alcohol	CH₄O	25	1076	0.695
m-xylene	C ₈ H ₁₀	20	1343	0.749 (15°C)
o-xylene	C ₈ H ₁₀	25	1331.5	0.903 (20°C)
p-xylene	C ₈ H ₁₀	20	1334	0.662
Xylene hexafluoride	C ₈ H ₄ F ₆	25	879	0.613

Fuji Electric Co.,Ltd.

Head office 11-2 Osaki 1-chome, Sinagawa-ku, Tokyo,141-0032 Japan Phone:81-3-5435-7111 http://www.fujielectric.co.jp/eng/sg/KEISOKU /welcome.htm

Fuji Electric Instruments Co.,Ltd.

Sales Div. International Sales Dept. No.1, Fuji-machi, Hino-city, Tokyo,191-8502 Japan Phone:81-42-585-6201,6202 Fax:81-42-585-6187,6189